题目内容
19.某几何体的三视图如图所示(单位:cm),则该几何体的体积是$\frac{2\sqrt{3}}{3}$cm2.分析 根据几何体的三视图,得出该几何体是侧面垂直于底面的三棱锥,画出图形,结合图中数据即可求出它的体积.
解答 解:根据几何体的三视图得:该几何体是如图所示的三棱锥,且三棱锥的侧面PAC⊥底面ABC;![]()
所以,该三棱锥的体积为V=$\frac{1}{3}$S△ABCh=$\frac{1}{3}$×$\frac{1}{2}$×4×$\sqrt{3}$×1=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.
点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.
练习册系列答案
相关题目
9.
如图所示,一个圆乒乓球筒,高为20厘米,底面半径为2厘米,球桶的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度均忽略不计),一个平面与两个乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为( )
| A. | $\frac{1}{5}$ | B. | $\frac{\sqrt{15}}{4}$ | C. | $\frac{2\sqrt{6}}{5}$ | D. | $\frac{1}{4}$ |