题目内容

6.已知△ABC的内角A,B,C的对边分别是a,b,c,且$\frac{tanA+tanB}{tanB}=\frac{2c}{b}$.
(1)求角A的大小;
(2)若$a=2\sqrt{3}$,求△ABC面积的最大值.

分析 (1)由同角三角函数基本关系,正弦定理,三角形内角和定理,诱导公式化简已知等式可得$cosA=\frac{1}{2}$,结合范围A∈(0,π),可求A的值.
(2)由余弦定理,基本不等式可求bc≤12,进而利用三角形面积公式可求最大值.

解答 (本题满分为12分)
解:(1)因为$\frac{tanA+tanB}{tanB}=\frac{2c}{b}$,
由同角三角函数基本关系和正弦定理得,$\frac{{\frac{sinA}{cosA}+\frac{sinB}{cosB}}}{{\frac{sinB}{cosB}}}=\frac{2sinC}{sinB}$,…(1分)
整理得:$\frac{sin(A+B)}{cosA}=2sinC$,…(3分)
又A+B=π-C,
所以sin(A+B)=sinC,
所以$cosA=\frac{1}{2}$.…(5分)
又A∈(0,π),
所以$A=\frac{π}{3}$.…(6分)
(2)由余弦定理得:$12={b^2}+{c^2}-2bccos\frac{π}{3}$,
即:b2+c2-bc=12,…(8分)
所以12=b2+c2-bc≥2bc-bc=bc,当且仅当$b=c=2\sqrt{3}$时取等号,…(10分)
所以${S_{△ABC}}=\frac{1}{2}bcsin\frac{π}{3}≤\frac{1}{2}×12×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,
即△ABC面积的最大值为$3\sqrt{3}$.…(12分)

点评 本题主要考查了同角三角函数基本关系,正弦定理,三角形内角和定理,诱导公式,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网