题目内容
数列{an}的前n项和为Sn,若a1=3,Sn和Sn+1满足等式Sn+1=
Sn+n+1.
(Ⅰ)求证:数列{
}是等差数列;
(Ⅱ)若数列{bn}满足bn=an•2 an,求数列{bn}的前n项和Tn.
| n+1 |
| n |
(Ⅰ)求证:数列{
| Sn |
| n |
(Ⅱ)若数列{bn}满足bn=an•2 an,求数列{bn}的前n项和Tn.
考点:数列的求和,等差数列的性质
专题:综合题,等差数列与等比数列
分析:(Ⅰ)由Sn+1=
Sn+n+1,两边同除以n+1,可得
-
=1,即可证明;
(Ⅱ)由(Ⅰ)Sn.当n≥2时,an=Sn-Sn-1即可得出数列{an}的通项,再利用错位相减法,可求数列{bn}的前n项和Tn.
| n+1 |
| n |
| Sn+1 |
| n+1 |
| Sn |
| n |
(Ⅱ)由(Ⅰ)Sn.当n≥2时,an=Sn-Sn-1即可得出数列{an}的通项,再利用错位相减法,可求数列{bn}的前n项和Tn.
解答:
(Ⅰ)证明:∵Sn+1=
Sn+n+1,
∴
-
=1,
∴数列{
}是以3为首项,1为公差的等差数列.
(Ⅱ)解:由(Ⅰ)可得
=3+n-1=n+2,
化为Sn=n2+2n.
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
又a1=3也满足.
∴数列{an}的通项公式为an=2n+1.
∴bn=an•2 an=(2n+1)•22n+1.
∴Tn=3•23+5•25+…+(2n+1)•22n+1,
∴4Tn=3•25+5•27+…+(2n+1)•22n+3,
两式相减,整理可得Tn=(
n-
)•22n+3+
.
| n+1 |
| n |
∴
| Sn+1 |
| n+1 |
| Sn |
| n |
∴数列{
| Sn |
| n |
(Ⅱ)解:由(Ⅰ)可得
| Sn |
| n |
化为Sn=n2+2n.
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
又a1=3也满足.
∴数列{an}的通项公式为an=2n+1.
∴bn=an•2 an=(2n+1)•22n+1.
∴Tn=3•23+5•25+…+(2n+1)•22n+1,
∴4Tn=3•25+5•27+…+(2n+1)•22n+3,
两式相减,整理可得Tn=(
| 2 |
| 3 |
| 1 |
| 3 |
| 40 |
| 3 |
点评:数熟练掌握等差数列的定义、通项公式、错位相减法及其利用“当n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,”求an的方法等是解题的关键.
练习册系列答案
相关题目