题目内容
设定义在R上的偶函数f(x)在区间[0,+∞)上单调递减,如果f(m2-2)>f(m),求实数m的取值范围.
考点:奇偶性与单调性的综合
专题:综合题,函数的性质及应用
分析:利用偶函数的性质,f(m2-2)>f(m)可化为f(|m2-2|)>f(|m|),由f(x)在区间[0,+∞)上单调递减,得|m2-2|<|m|,两边平方可解.
解答:
解:∵f(x)是偶函数,∴f(x)=f(|x|),
∴f(m2-2)>f(m),可化为f(|m2-2|)>f(|m|),
又f(x)在区间[0,+∞)上单调递减,
∴|m2-2|<|m|,两边平方,整理得(m2-1)(m2-4)<0,
∴1<m2<4,解得1<m<2或-2<m<-1,
故实数m的取值范围是(1,2)∪(-2,-1).
∴f(m2-2)>f(m),可化为f(|m2-2|)>f(|m|),
又f(x)在区间[0,+∞)上单调递减,
∴|m2-2|<|m|,两边平方,整理得(m2-1)(m2-4)<0,
∴1<m2<4,解得1<m<2或-2<m<-1,
故实数m的取值范围是(1,2)∪(-2,-1).
点评:本题考查函数的奇偶性、单调性及其综合应用,考查抽象不等式的求解,考查转化思想,属中档题.
练习册系列答案
相关题目
已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{
}的前99和为( )
| 1 |
| anan+1 |
A、
| ||
B、
| ||
C、
| ||
D、
|