题目内容
4.设f(x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间[-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同实根,则a的取值范围是( )| A. | $\root{3}{4}$<a<2 | B. | 1<a<2 | C. | $\root{3}{4}$<a<$\root{6}{9}$ | D. | 1<a<$\root{3}{7}$ |
分析 由已知中可以得到函数f(x)是一个周期函数,且周期为4,将方程f(x)-logax+2=0恰有3个不同的实数解,转化为函数f(x)的与函数y=-logax+2的图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.
解答 解:∵对于任意的x∈R,都有f(x-2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.
又∵当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,且函数f(x)是定义在R上的偶函数,
若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0恰有3个不同的实数解,
则函数y=f(x)与y=loga(x+2)在区间(-2,6]上有三个不同的交点,如下图所示:![]()
又f(-2)=f(2)=3,
则对于函数y=loga(x+2),由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,
即loga4<3,且loga8>3,由此解得:$\root{3}{4}$<a<2,
故选:A.
点评 本题考查的知识点是根的存在性及根的个数判断,指数函数与对数函数的图象与性质,其中根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题,是解答本题的关键,体现了转化和数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
14.已知函数f(x)=ax-x3,对区间(0,1)上的任意x1,x2,且x1<x2,都有f(x1)-f(x2)<x1-x2成立,则实数a的取值范围为( )
| A. | (0,1) | B. | [4,+∞) | C. | (0,4] | D. | (1,4] |
12.设复数z满足i3=z(1-i)(i为虚数单位),则复数z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
19.表面积为$\frac{{4\sqrt{3}}}{3}$的正四面体的各个顶点都在同一个球面上,则此球的体积为( )
| A. | $\frac{{\sqrt{2}}}{3}π$ | B. | $\frac{1}{3}π$ | C. | $\frac{2}{3}π$ | D. | $\frac{{2\sqrt{2}}}{3}π$ |
9.已知a=log0.53,b=20.7,c=0.90.8,则a、b、c的大小关系是( )
| A. | c<b<a | B. | a<c<b | C. | a<b<c | D. | b<c<a |
16.已知f(x)是定义在区间(0,+∞)上的函数,其导函数为f'(x),且不等式xf'(x)<2f(x)恒成立,则( )
| A. | 4f(1)<f(2) | B. | 4f(1)>f(2) | C. | f(1)<4f(2) | D. | f(1)<2f'(2) |
13.数列{an}中,如果an=49-2n,则Sn取最大值时,n等于( )
| A. | 23 | B. | 24 | C. | 25 | D. | 26 |