题目内容
13.数列{an}中,如果an=49-2n,则Sn取最大值时,n等于( )| A. | 23 | B. | 24 | C. | 25 | D. | 26 |
分析 先令an=49-2n>0求得n的范围,可知数列前24项全部为正,第25项开始为负,进而可知数列的前24项和最大即可求得答案.
解答 解:令an=49-2n>0,求得n<$\frac{49}{2}$=24$\frac{1}{2}$,
∵a1=49>0,从而此数列从第25开始是负值,前24项均为正值,
∴前24项的和最大S24.
故选:B
点评 本题主要考查了等差数列的前n项的和,解题的关键是判断出数列中正数的项.
练习册系列答案
相关题目
3.探究函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如表:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)在区间(0,2)上递减;
函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)在区间(2,+∞)上递增.
当x=2时,y最小=4.
(2)证明:函数f(x)=x+$\frac{4}{x}$(x>0)在区间(0,2)递减.
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)在区间(0,2)上递减;
函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)在区间(2,+∞)上递增.
当x=2时,y最小=4.
(2)证明:函数f(x)=x+$\frac{4}{x}$(x>0)在区间(0,2)递减.
4.设f(x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间[-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同实根,则a的取值范围是( )
| A. | $\root{3}{4}$<a<2 | B. | 1<a<2 | C. | $\root{3}{4}$<a<$\root{6}{9}$ | D. | 1<a<$\root{3}{7}$ |
8.函数$f(x)={log_{\frac{1}{2}}}({x^2}-4x)$的单调递增区间是( )
| A. | (2,+∞) | B. | (-∞,0) | C. | (4,+∞) | D. | (-∞,-2) |
18.下列说法正确的是( )
| A. | 命题:?x∈R,使得ex>0的否定是:?x∈R,有ex>0 | |
| B. | 命题:已知x,y∈R,若x+y≠4,则x≠2或y≠2是真命题 | |
| C. | 不等式f(x)≥g(x)恒成立?f(x)min≥g(x)max | |
| D. | 命题:若a=-1,则函数f(x)=ax2+2x-1只有一个零点的否命题为真命题 |
2.等差数列{an}的前n项和为Sn,且a1<0,若存在自然数m≥3,使得am=Sm,则当n>m时,Sn与an的大小关系是( )
| A. | Sn<an | B. | Sn≤an | C. | Sn>an | D. | 大小不能确定 |