题目内容
12.若复数z满足iz=1+i,则z的共轭复数$\overline{z}$在复平面内所对应点的坐标为( )| A. | (1,1) | B. | (1,-1) | C. | (-1,1) | D. | (-1,-1) |
分析 利用复数的运算法则、共轭复数的定义、几何意义即可得出.
解答 解:iz=1+i,∴-i•iz=-i(1+i),∴z=-i+1.
则z的共轭复数$\overline{z}$=1+i在复平面内所对应点的坐标为(1,1).
故选:A.
点评 本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.设集合A={3,log2(a-2)},B={a,a+b},若A∩B={1},则b的值为( )
| A. | -3 | B. | 3 | C. | 1 | D. | -1 |
20.某学校食堂在高一年级学生中抽查了100名学生进行饮食习惯调查,结果如表:
(I)从这100人中随机抽取1人,求抽到喜欢吃辣的学生概率;
(II)试判断有多大把握认为喜欢吃辣与性别有关;
(III)已知在被调查的学生中有5人来自一班,其中有2人喜欢吃辣,从这5人中随机抽取3人,求其中恰有1人喜欢吃辣的概率.
下面临界值表仅供参考:
$({参考公式:{K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d})$.
| 喜欢吃辣 | 不喜欢吃辣 | 合计 | |
| 男生 | 30 | 10 | 40 |
| 女生 | 25 | 35 | 60 |
| 合计 | 55 | 45 | 100 |
(II)试判断有多大把握认为喜欢吃辣与性别有关;
(III)已知在被调查的学生中有5人来自一班,其中有2人喜欢吃辣,从这5人中随机抽取3人,求其中恰有1人喜欢吃辣的概率.
下面临界值表仅供参考:
| P(K2≥k0) | 0.15 | 100. | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 8411. | 5.024 | 6.635 | 7.879 | 10.828 |
7.函数f(x)=(cosx)•ln|x|的大致图象是( )
| A. | B. | ||||
| C. | D. |
17.函数f(x)是定义在R上的偶函数,其导函数为f′(x),当x<0时,3f(x)+xf′(x)<0恒成立,则下列结论正确的是( )
| A. | f(1)<2016f($\root{3}{2016}$)<2017f($\root{3}{2017}$) | B. | 2017f($\root{3}{2017}$)<f(1)<2016f($\root{3}{2016}$) | ||
| C. | 2016f($\root{3}{2016}$)<f(1)<2017f($\root{3}{2017}$) | D. | 2017f($\root{3}{2017}$)<2016f($\root{3}{2016}$)<f(1) |
1.已知变量x与y负相关,且由观测数据算得样本平均数$\overline x=2$,$\overline y=1.5$,则由该观测数据算得的线性回归方程可能是( )
| A. | y=0.6x+1.1 | B. | y=3x-4.5 | C. | y=-2x+5.5 | D. | y=-0.4x+3.3 |