题目内容

若数列{an}满足an+T=an,其中T为非零正常数,则称数列{an}为周期数列,T为数列{an}的周期.
(Ⅰ)设{bn}是周期为7的数列,其中b1,b2,…,b7是等比数列,且b2=3,b4=7,求b2014
(Ⅱ)设{cn}是周期为7的数列,其中c1,c2,…,c7是等比数列,且c1=1,c11=8,对于(Ⅰ)中数列{bn},记Sn=b1c1+b2c2+…+bncn,若Sn>2014,求n的最小值.
考点:数列的求和,数列与函数的综合
专题:综合题,等差数列与等比数列
分析:(I)利用已知条件,求出等差数列的公比,利用等差数列的通项公式求出通项,从而求出b2014
(II)根据条件得到Sn=b1c1+b2c2+…+bncn=1•1+3•2+5•22+…+(2n-1)2 n-1 由于(2n-1)2n-1是有一等差数列{2n-1}与等比数列{2n-1}的积构成的数列,利用错位相减的方法求出前n项和,最后求得Sn>2014时n的最小值即可.
解答: 解:(Ⅰ)∵b2=3,b4=7,∴d=2,
∴bn=b2+(n-2)×2=2n-1(n≤7),
∴b2014=b287×7+5=b5=9.
(Ⅱ)c1=1,c4=8,∴q3=8,q=2,
当n≤7时,Sn=b1c1+b2c2+…+bncn=1•1+3•2+5•22+…+(2n-1)2 n-1  ①
2Sn=1•2+3•22+5•23+…+(2n-1)2 n-1    ②
①-②得
-Sn=1+2(2+22+…+2n-1)-(2n-1)2n
=1+
4(2n-1-1)
2-1
-(2n-1)2n
=-3-(2n-3)2n
∴Sn=3+(2n-3)2n(n≤7)
由S7=1411,S6=579,知S13=S7+S6=1411+579=1990<2014,S14=2S7=2×1411=2822>2014
所以满足Sn>2014,n的最小值14.
点评:本题考查等差数列与等比数列的通项公式、数列求和等知识,考查学生运算能力、推理能力、分析问题的能力,中等题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网