题目内容
如图,在半径为的⊙O中,弦AB、CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为________.
已知,现在我国的人口年平均增长率为1.5‰,设现有人口总数为12.3亿,设计算法,用语句描述多少年后人口数将达到或超过15亿.
设n为正整数,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结论,可推测一般的结论为________.
用数学归纳法证明(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)(n∈N+)时,从k到k+1,左边需要增加的代数式为________.
是否存在常数a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N+都成立,若存在,求出a、b、c并证明;若不存在,试说明理由.
如图所示,矩形ABCD中,AB=12,AD=10,将此矩形折叠使点B落在AD边的中点E处,则折痕FG的长为( )
A.13 B.
C. D.
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为________.