题目内容
16.(文)已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.
分析 (Ⅰ)利用二倍角三角函数公式和辅助角公式化简,得到f(x)=sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$.再由三角函数的周期公式求出ω;
(Ⅱ)由(Ⅰ)中的正弦函数的图象的性质来求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.
解答 解:(Ⅰ)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)
=$\frac{1-2cos2ωx}{2}$+$\frac{\sqrt{3}}{2}$sin2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$cos2ωx+$\frac{1}{2}$
=sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$.
因为函数f(x)的最小正周期为π,且ω>0,
所以$\frac{2π}{ω}$=π,
解得ω=1.
(Ⅱ)由(Ⅰ)得f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$.
因为x∈[0,$\frac{2π}{3}$],
所以2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{7π}{6}$],
所以-$\frac{1}{2}$≤sin(2x-$\frac{π}{6}$)≤1.
所以0≤sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$≤$\frac{3}{2}$.
点评 本题给出三角函数表达式,求函数的周期与单调区间,并求闭区间上的最值.着重考查了三角恒等变换、三角函数的图象与性质等知识,属于中档题.
练习册系列答案
相关题目
7.设数列{an}满足a1=2,an+1=2-$\frac{1}{{a}_{n}}$(n∈N*),那么a2是( )
| A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{4}$ |
4.已知f(x+1)为偶函数,则函数y=f(2x)的图象的对称轴是( )
| A. | x=1 | B. | x=$\frac{1}{2}$ | C. | x=-$\frac{1}{2}$ | D. | x=-1 |
1.下列命题中,正确的是( )
| A. | sin($\frac{3π}{2}$+α)=cosα | B. | 常数数列一定是等比数列 | ||
| C. | 若0<a<$\frac{1}{b}$,则ab<1 | D. | x+$\frac{1}{x}$≥2 |