题目内容

17.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (1)利用递推关系可得:an+1=2an+1,变形为:an+1+1=2(an+1),利用等比数列的通项公式即可得出.
(2)利用“裂项求和”方法即可得出.

解答 解:(1)∵Sn+1=2Sn+n+1(n∈N*),
∴当n≥2时,Sn=2Sn-1+n,
∴an+1=2an+1,
变形为:an+1+1=2(an+1),
∴数列{an+1}是等比数列,公比为2,首项为2.
∴an+1=2n
∴an=2n-1.
(2)bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
∴数列{bn}的前n项和Tn=$1-\frac{1}{{2}^{2}-1}$+$\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$
=1-$\frac{1}{{2}^{n+1}-1}$.

点评 本题考查了“裂项求和”方法、数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网