ÌâÄ¿ÄÚÈÝ

8£®ÒÑÖªµãPΪÍÖÔ²$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1Éϵ͝µã£¬EFΪԲN£ºx2+£¨y-1£©2=1µÄÈÎÒ»Ö±¾¶£¬Çó$\overrightarrow{PE}•\overrightarrow{PF}$×î´óÖµºÍ×îСֵÊÇ£¨¡¡¡¡£©
A£®16£¬12-4$\sqrt{3}$B£®17£¬13-4$\sqrt{3}$C£®19£¬12-4$\sqrt{3}$D£®20£¬13-4$\sqrt{3}$

·ÖÎö ¸ù¾ÝÌâÒ⣬µÃ|NE|=|NF|=1ÇÒ$\overrightarrow{NF}=-\overrightarrow{NE}$£¬ÓÉ´Ë»¯¼òµÃ$\overrightarrow{PE}•\overrightarrow{PF}$=$|\overrightarrow{PN}{|}^{2}$-1£¬¸ù¾ÝÍÖÔ²·½³ÌÓëÁ½µãµÄ¾àÀ빫ʽ£¬Çó³öµ±PµÄ×Ý×ø±êΪ-3ʱ£¬$|\overrightarrow{PN}{|}^{2}$È¡µÃ×î´óÖµ20£¬Óɴ˼´µÃ$\overrightarrow{PE}•\overrightarrow{PF}$=$|\overrightarrow{PN}{|}^{2}$-1µÄ×î´óÖµ£¬µ±PµÄ×Ý×ø±êΪ$2\sqrt{3}$ʱ£¬$|\overrightarrow{PN}{|}^{2}$È¡µÃ×îСֵ$13-4\sqrt{3}$£¬Óɴ˼´µÃ$\overrightarrow{PE}•\overrightarrow{PF}$=$|\overrightarrow{PN}{|}^{2}$-1µÄ×îСֵ£®

½â´ð ½â£º¡ßEFΪԲNµÄÖ±¾¶£¬¡à|NE|=|NF|=1£¬ÇÒ$\overrightarrow{NF}=-\overrightarrow{NE}$£¬
Ôò$\overrightarrow{PE}•\overrightarrow{PF}$=£¨$\overrightarrow{PN}$+$\overrightarrow{NE}$£©•£¨$\overrightarrow{PN}$+$\overrightarrow{NF}$£©
=£¨$\overrightarrow{PN}$+$\overrightarrow{NE}$£©•£¨$\overrightarrow{PN}$$-\overrightarrow{NE}$ £©
=${\overrightarrow{PN}}^{2}-{\overrightarrow{NE}}^{2}$=$|\overrightarrow{PN}{|}^{2}$-1£¬
ÉèP£¨x0£¬y0£©£¬ÔòÓÐ$\frac{{{x}_{0}}^{2}}{16}+\frac{{{y}_{0}}^{2}}{12}=1$¼´x02=16-$\frac{4}{3}$y02
ÓÖN£¨0£¬1£©£¬¡à$|\overrightarrow{PN}{|}^{2}$=${{x}_{0}}^{2}+£¨{y}_{0}-1£©^{2}=-\frac{1}{3}£¨{y}_{0}+3£©^{2}+20$£¬
¶øy0¡Ê[-2$\sqrt{3}$£¬2$\sqrt{3}$]£¬
¡àµ±y0=-3ʱ£¬$|\overrightarrow{PN}{|}^{2}$È¡µÃ×î´óÖµ20£¬Ôò$\overrightarrow{PE}•\overrightarrow{PF}$=$|\overrightarrow{PN}{|}^{2}$-1=20-1=19£¬
µ±y0=$2\sqrt{3}$ʱ£¬$|\overrightarrow{PN}{|}^{2}$È¡µÃ×îСֵ$13-4\sqrt{3}$£¬Ôò$\overrightarrow{PE}•\overrightarrow{PF}$=$|\overrightarrow{PN}{|}^{2}$-1=$13-4\sqrt{3}$-1=$12-4\sqrt{3}$£®
¡à$\overrightarrow{PE}•\overrightarrow{PF}$×î´óÖµºÍ×îСֵÊÇ£º19£¬$12-4\sqrt{3}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÏòÁ¿ÖªÊ¶ÒÔ¼°Åä·½·¨µÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø