题目内容

已知圆O:x2+y2=2,直线l:x+2y-4=0,点P(x0,y0)在直线l上.若存在圆C上的点Q,使得∠OPQ=45°(O为坐标原点),则x0的取值范围是(  )
A、[0,1]
B、[0,
8
5
]
C、[-
1
2
,1]
D、[-
1
2
8
5
]
考点:直线与圆相交的性质
专题:直线与圆
分析:根据条件若存在圆C上的点Q,使得∠OPQ=45°(O为坐标原点),等价PO≤2即可,求出不等式的解集即可得到x0的范围
解答: 解:圆O外有一点P,圆上有一动点Q,∠OPQ在PQ与圆相切时取得最大值.
如果OP变长,那么∠OPQ可以获得的最大值将变小.可以得知,当∠OPQ=45°,且PQ与圆相切时,PO=2,
而当PO>2时,Q在圆上任意移动,∠OPQ<45°恒成立0.
因此满足PO≤2,就能保证一定存在点Q,使得∠OPQ=45°,否则,这样的点Q是不存在的;
∵点P(x0,y0)在直线x+2y-4=0上,∴x0+2y0-4=0,即y0=
4-x0
2

∵|OP|2=x02+y02=x02+(
4-x0
2
2=
5
4
x02-2x0+4≤4,
5
4
x02-2x0≤0,
解得,0≤x0
8
5

∴x0的取值范围是[0,
8
5
]
故选:B
点评:本题考查点与圆的位置关系,利用数形结合判断出PO≤2,从而得到不等式求出参数的取值范围是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网