题目内容

11.向△ABC内任意投一点P,若△ABC面积为s,则△PBC的面积小于等于$\frac{s}{2}$的概率为$\frac{3}{4}$.

分析 由在△ABC的中位线上任取一点P,则△PBC的面积等于$\frac{s}{2}$,即满足条件的点P构成的区域,再根据面积比,得到结果.

解答 解:记事件A={△PBC的面积小于$\frac{s}{2}$},
基本事件空间是三角形ABC的面积,(如图)
事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),
因为阴影部分的面积是整个三角形面积的$\frac{3}{4}$,
所以P(A)=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$

点评 本题考查了几何概型,解答此题的关键在于明确测度比是面积比.对于几何概型常见的测度是长度之比,面积之比,体积之比,角度之比,要根据题意合理的判断和选择是哪一种测度进行求解.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网