ÌâÄ¿ÄÚÈÝ
2£®Èçͼ1£¬Ö±½ÇÌÝÐÎABCD£¬AD¡ÎBC£¬¡ÏBAD=90¡ã£¬EF¡ÎAB£¬½«ËıßÐÎCDFEÑØEFÕÛÆð£¬Ê¹DF¡ÍAF£¬BDÓëÆ½ÃæABEFËù³É½ÇΪ45¡ã£¬DF=2CE=2£¬AB=$\sqrt{2}$£¬Èçͼ2£¨1£©ÇóÖ¤£ºAE¡ÍÆ½ÃæBDF
£¨2£©Éè$\overrightarrow{AM}$=¦Ë$\overrightarrow{AF}$£¬¦Ë¡Ê[0£¬1]£¬ÊÇ·ñ´æÔÚ·ûºÏÌõ¼þµÄµãM£¬Ê¹µÃC-BD-MΪֱ¶þÃæ½Ç£¬Èô´æÔÚ£¬Çó³öÏàÓ¦µÄ¦ËÖµ£¬·ñÔò˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÍƵ¼³öEF¡ÍDF£¬DF¡ÍAF£¬´Ó¶øDF¡ÍÆ½ÃæABEF£¬½ø¶øDF¡ÍBF£¬DF¡ÍAE£¬Óɴ˵õ½ËıßÐÎABEFΪÕý·½ÐΣ¬´Ó¶øAE¡ÍBF£¬ÓÉ´ËÄÜÖ¤Ã÷AE¡ÍÆ½ÃæBDF£®
£¨2£©ÒÔFÎª×ø±êԵ㣬FE¡¢FA¡¢FDËùÔÚÖ±Ïß·Ö±ðΪxÖᣬyÖᣬzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³ö´æÔÚ·ûºÏÌõ¼þµÄµãMʹµÃC-BD-MΪֱ¶þÃæ½Ç£¬ÇÒ¦Ë=1£®
½â´ð Ö¤Ã÷£º£¨1£©ÓÉÒÑÖªÔÚÖ±½ÇÌÝÐÎABCDÖУ¬EF¡ÎAB£¬µÃEF¡ÍDF£®![]()
ÓÖDF¡ÍAF£¬¡àDF¡ÍÆ½ÃæABEF£¬¡àDF¡ÍBF£¬DF¡ÍAE£®
ÓÖBDÓëÆ½ÃæABEFËù³É½ÇΪ45¡ã£¬¡àDF=BF=2£®
ÔÚRt¡÷BEFÖУ¬BE=$\sqrt{B{F}^{2}-A{B}^{2}}$=$\sqrt{2}$£¬¡àËıßÐÎABEFΪÕý·½ÐΣ®
¡àAE¡ÍBF£¬¡àAE¡ÍÆ½ÃæBDF£®¡£¨5·Ö£©
½â£º£¨2£©ÒÔFÎª×ø±êԵ㣬FE¡¢FA¡¢FDËùÔÚÖ±Ïß·Ö±ðΪxÖᣬyÖᣬzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Èçͼ£¬
ÔòF£¨0£¬0£¬0£©£¬A£¨0£¬$\sqrt{2}$£¬0£©£¬B£¨$\sqrt{2}£¬\sqrt{2}$£¬0£©C£¨$\sqrt{2}$£¬0£¬1£©£¬D£¨0£¬0£¬2£©£¬¡£¨6·Ö£©
$\overrightarrow{BM}$=$\overrightarrow{BA}+\overrightarrow{AM}$=£¨-$\sqrt{2}$£¬0£¬0£©+¦Ë£¨0£¬-$\sqrt{2}$£¬0£©=£¨-$\sqrt{2}£¬-\sqrt{2}¦Ë£¬0$£©£¬
$\overrightarrow{BD}$=£¨-$\sqrt{2}£¬-\sqrt{2}£¬2$£©£¬$\overrightarrow{DC}$=£¨$\sqrt{2}£¬0£¬-1$£©£¬¡£¨7·Ö£©
ÉèÆ½ÃæBCDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬Æ½ÃæBDMµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{n}$=£¨a£¬b£¬c£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{BD}•\overrightarrow{m}=\sqrt{2}x+\sqrt{2}y-2z=0}\\{\overrightarrow{DC}•\overrightarrow{m}=\sqrt{2}x-z=0}\end{array}\right.$£¬Áîx=1£¬µÃ$\overrightarrow{m}$=£¨1£¬1£¬$\sqrt{2}$£©£¬¡£¨8·Ö£©
$\left\{\begin{array}{l}{\overrightarrow{BM}•\overrightarrow{n}=a+¦Ëb=0}\\{\overrightarrow{BD}•\overrightarrow{n}=\sqrt{2}a+\sqrt{2}b-2c=0}\end{array}\right.$£¬Áîa=-¦Ë£¬µÃ$\overrightarrow{n}$=£¨-$¦Ë£¬1£¬\frac{\sqrt{2}-\sqrt{2}¦Ë}{2}$£©£¬¡£¨10·Ö£©
ÓÉ$\overrightarrow{m}•\overrightarrow{n}$=0£¬µÃ-$¦Ë+1+\frac{\sqrt{2}-\sqrt{2}¦Ë}{2}¡Á\sqrt{2}=0$£¬½âµÃ¦Ë=1¡Ê[0£¬1]£¬¡£¨11·Ö£©
ËùÒÔ´æÔÚ·ûºÏÌõ¼þµÄµãMʹµÃC-BD-MΪֱ¶þÃæ½Ç£¬ÇÒ¦Ë=1£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÏßÃæ´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÂú×ã¶þÃæ½ÇΪֱ¶þÃæ½ÇµÄµãµÄÈ·¶¨ÓëÇ󷨣¬¿¼²é¿Õ¼äÖÐÏßÏß¡¢ÏßÃæ¡¢ÃæÃæ¼äµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | ³äÒªÌõ¼þ | B£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ | ||
| C£® | ³ä·ÖÌõ¼þ | D£® | ±ØÒªÌõ¼þ |
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{2}{5}$ |
| A£® | 30 | B£® | 31 | C£® | 62 | D£® | 63 |
£¨1£©Èç¹û´ÓµÚ8ÐеÚ7ÁеÄÊý¿ªÊ¼ÏòÓÒ¶Á£¬ÇëÄãÒÀ´Îд³ö×îÏȼì²éµÄ3¸öÈ˵ıàºÅ£»
£¨ÏÂÃæÕªÈ¡Á˵Ú7Ðе½µÚ9ÐУ©
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
£¨2£©³éÈ¡µÄ100È˵ÄÊýѧÓëµØÀíµÄˮƽ²âÊԳɼ¨ÈçÏÂ±í£º
³É¼¨·ÖΪÓÅÐã¡¢Á¼ºÃ¡¢¼°¸ñÈý¸öµÈ¼¶£»ºáÏò£¬×ÝÏò·Ö±ð±íʾµØÀí³É¼¨ÓëÊýѧ³É¼¨£¬ÀýÈ磺±íÖÐÊýѧ³É¼¨ÎªÁ¼ºÃµÄ¹²ÓÐ20+18+4=42
¢ÙÈôÔÚ¸ÃÑù±¾ÖУ¬Êýѧ³É¼¨ÓÅÐãÂÊÊÇ30%£¬Çóa£¬bµÄÖµ£º
| ÈËÊý | Êýѧ | |||
| ÓÅÐã | Á¼ºÃ | ¼°¸ñ | ||
| µØÀí | ÓÅÐã | 7 | 20 | 5 |
| Á¼ºÃ | 9 | 18 | 6 | |
| ¼°¸ñ | a | 4 | b | |