题目内容
12.已知数列{an}是首项为a1,公差为d的等差数列.(1)若a1=-11,d=2,bn=3an,数列{bn}的前n项积记为Bn,且Bn0=1,求n0的值;
(2)若a1d≠0,且a13+a23+…+an3=(a1+a2+…+an)2恒成立,求{an}的通项公式;
(3)设n、k∈N*,n≥2,试证组合数满足kCnk=nCn-1k-1;观察C20a1-C21a2+C22a3=0,C30a1-C31a2+C32a3-C33a4=0,C40a1-C41a2+C42a3-C43a4+C44a5=0,…,请写出关于等差数列{an}的一般结论,并利用kCnk=nCn-1k-1证明之.
分析 (1)根据等比数列的通项公式计算Bn,令Bn=1即可求出n的值;
(2)由且a13+a23+…+an3=(a1+a2+…+an)2得a13+a23+…+an+13=(a1+a2+…+an+1)2,两式相减即可得出d,令n=1计算a1,从而求出an;
(3)根据组合数计算公式证明kCnk=nCn-1k-1,根据二项式定理和数学归纳法证明猜想.
解答 解:(1)设{an}的前n项和为Sn,则Sn=-11n+$\frac{n(n-1)}{2}×2$=n2-12n.
∴Bn=b1b2b3…bn=3${\;}^{{a}_{1}+{a}_{2}+{a}_{3}+…+{a}_{n}}$=3${\;}^{{n}^{2}-12n}$,
令3${\;}^{{n}^{2}-12n}$=1得n2-12n=0,
∴n=12.
(2)当n=1时,a13=a12,∴a1=1或a1=0(舍).
∵a13+a23+…+an3=(a1+a2+…+an)2,
∴a13+a23+…+an3+an+13=(a1+a2+…+an+an+1)2,
两式相减得:an+13=(2a1+2a2+…+2an+an+1)an+1,
∴an+12=2a1+2a2+…+2an+an+1,
∴an2=2a1+2a2+…+2an-1+an,
两式相减得:(an+1+an)(an+1-an)=an+1+an,
∴an+1-an=1,∴d=1.
∴an=n.
(3)kCnk=$\frac{kn!}{k!(n-k)!}$=$\frac{n!}{(k-1)!(n-k)!}$=$\frac{n(n-1)!}{(k-1)!(n-k)!}$=n${C}_{n-1}^{k-1}$.
猜想:${C}_{n}^{0}$a1-${C}_{n}^{1}$a2+${C}_{n}^{2}$a3+…+(-1)n+1${C}_{n}^{n}$an+1=0,
证明:当n=2时,${C}_{2}^{0}$a1-${C}_{2}^{1}$a2+${C}_{2}^{2}$a3=a1-2a2+a3,
∵{an}是等差数列,∴a1-2a2+a3=0,即n=2时,猜想成立;
假设当n=k时,猜想成立,即${C}_{k}^{0}$a1-${C}_{k}^{1}$a2+${C}_{k}^{2}$a3+…+(-1)k${C}_{k}^{k}$ak+1=0,
∴${C}_{k+1}^{0}$a1-${C}_{k+1}^{1}$a2+${C}_{k+1}^{2}$a3+…+(-1)k+1${C}_{k+1}^{k+1}$ak+2
=${C}_{k}^{0}$a1-(${C}_{k}^{0}$+${C}_{k}^{1}$)a2+(${C}_{k}^{1}$+${C}_{k}^{2}$)a3+…+(-1)k+1${C}_{k}^{k}$ak+2
=${C}_{k}^{0}$a1-${C}_{k}^{1}$a2+${C}_{k}^{2}$a3+…+(-1)k${C}_{k}^{k}$ak+1-${C}_{k}^{0}$a2+${C}_{k}^{1}$a3+…+(-1)k+1${C}_{k}^{k}$ak+2
=-${C}_{k}^{0}$a2+${C}_{k}^{1}$a3+…+(-1)k+1${C}_{k}^{k}$ak+2
=-Ck0(a1+d)+${C}_{k}^{1}$(a2+d)+…+(-1)k+1${C}_{k}^{k}$(ak+1+d)
=-[${C}_{k}^{0}$a1-${C}_{k}^{1}$a2+${C}_{k}^{2}$a3+…+(-1)k+1${C}_{k}^{k}$ak+1]+d(-${C}_{k}^{0}$+${C}_{k}^{1}$+…+(-1)k+1${C}_{k}^{k}$).
=-d(${C}_{k}^{0}$-${C}_{k}^{1}$+…+(-1)k${C}_{k}^{k}$).
∵(1-1)k=${C}_{k}^{0}$-${C}_{k}^{1}$+…+(-1)k${C}_{k}^{k}$=0,
∴-d(${C}_{k}^{0}$-${C}_{k}^{1}$+…+(-1)k${C}_{k}^{k}$)=0,
∴当n=k+1时,猜想成立.
∴${C}_{k}^{0}$a1-${C}_{k}^{1}$a2+${C}_{k}^{2}$a3+…+(-1)k${C}_{k}^{k}$ak+1=0.
点评 本题考查了数学归纳法,二项式定理,属于中档题.
| A. | 1或2 | B. | 1 | C. | 2 | D. | $\sqrt{3}$ |
| A. | ρcosθ=1 | B. | ρsinθ=1 | C. | ρ=cosθ | D. | ρ=sinθ |
| A. | $\frac{3}{2}{e^2}$ | B. | $\frac{3}{2}{e^{\frac{2}{3}}}$ | C. | $\frac{2}{3}{e^{\frac{2}{3}}}$ | D. | $\frac{1}{3}{e^{\frac{1}{3}}}$ |