题目内容
7.已知数列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2).(1)设bn=an+1+λan,是否存在实数λ,使数列{bn}为等比数列?若存在,求出λ的值,若不存在,请说明理由;
(2)求数列{an}的通项公式.
分析 (1)由an+1=an+2an-1(n≥2),可设:an+1+λan=μ(an+λan-1),化为:an+1=(μ-λ)an+λμan-1,
与an+1=an+2an-1比较可得:$\left\{\begin{array}{l}{μ-λ=1}\\{λμ=2}\end{array}\right.$,解出即可得出.
(2)由(1)可得:an+1+an=4×2n-1=2n+1,化为an+1-$\frac{1}{3}×{2}^{n+2}$=-$({a}_{n}-\frac{1}{3}×{2}^{n+1})$,利用等比数列的通项公式即可得出.
解答 解:(1)∵an+1=an+2an-1(n≥2),可设:an+1+λan=μ(an+λan-1),化为:an+1=(μ-λ)an+λμan-1,
与an+1=an+2an-1比较可得:$\left\{\begin{array}{l}{μ-λ=1}\\{λμ=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{μ=2}\\{λ=1}\end{array}\right.$,$\left\{\begin{array}{l}{μ=-1}\\{λ=-2}\end{array}\right.$,
可得:an+1+an=2(an+an-1),或an+1-2an=-(an-2an-1).
∴存在实数λ=1或-2,使数列{bn}为等比数列.
(2)由(1)可得:an+1+an=4×2n-1=2n+1,
化为an+1-$\frac{1}{3}×{2}^{n+2}$=-$({a}_{n}-\frac{1}{3}×{2}^{n+1})$,
∴${a}_{n}-\frac{1}{3}×{2}^{n+1}$=$-\frac{1}{3}$×(-1)n-1,
由等比数列的通项公式可得:an=$\frac{{2}^{n+1}+(-1)^{n}}{3}$.
点评 本题考查了数列的递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.