题目内容
12.与向量$\overrightarrow{a}$=(4,-3)垂直的单位向量是($\frac{3}{5}$,$\frac{4}{5}$).分析 根据相互垂直的两个向量的数量积为0便可看出向量(3,4)与$\overrightarrow{a}$垂直,从而将向量(3,4)变成单位向量即可.
解答 解:可看出向量(3,4)⊥(4,-3);
∴与向量$\overrightarrow{a}=(4,-3)$垂直的单位向量为$(\frac{3}{5},\frac{4}{5})$.
故答案为:$(\frac{3}{5},\frac{4}{5})$.
点评 考查相互垂直的两个向量的数量积为0,单位向量的概念,以及将一个向量变成单位向量的方法.
练习册系列答案
相关题目
3.若方程x3-3ax+2=0(a>0)有三个不同的实根,则实数a的取值范围为( )
| A. | a>0 | B. | 0<a<1 | C. | 1<a<3 | D. | a>1 |
20.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是两个不共线的向量,已知向量$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+sinα$\overrightarrow{{e}_{2}}$(-$\frac{π}{2}$<α<$\frac{π}{2}$),$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$-$\frac{5}{4}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三点共线,则函数f(x)=2cos(x+α)在[0,π)上的值域为( )
| A. | [-1,$\frac{1}{2}$] | B. | [-2,$\sqrt{3}$] | C. | (-2,1] | D. | (-1,$\sqrt{3}$] |
18.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若tanα=3,则f($α+\frac{π}{8}$)的值为( )
| A. | -$\frac{3}{5}$ | B. | -$\frac{4}{5}$ | C. | -$\frac{3\sqrt{2}}{5}$ | D. | -$\frac{4\sqrt{2}}{5}$ |