题目内容

10.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=EF,EF交BD于点H,将△DEF沿EF折到△D'EF的位置.
(1)证明:AC⊥HD';
(2)若$AB=5,AC=6,AE=\frac{5}{4},OD'=2\sqrt{2}$,求五棱锥D'-ABCEF体积.

分析 (1)证明AC∥EF,通过EF⊥HD,EF⊥HD',证明AC∥HD'.
(2)利用平行关系,经过计算证明OD′⊥OH,结合AC⊥HD′,AC⊥BD,推出AC⊥平面BHD′,得到AC⊥OD′,求出$EF=\frac{9}{2}$.五边形ABCFE的面积,然后求解五棱锥D'-ABCEF体积.

解答 解:(1)由已知得,AC⊥BD,AD=CD,
又由AE=CF得$\frac{AE}{AD}=\frac{CF}{CD}$,故AC∥EF,
由此得EF⊥HD,EF⊥HD',所以AC∥HD'.
(2)由EF∥AC得$\frac{OH}{DO}=\frac{AE}{AD}=\frac{1}{4}$,
由AB=5,AC=6得$DO=BO=\sqrt{A{B^2}-A{O^2}}=4$,
所以OH=1,D'H=DH=3,于是OD′2+OH2=$(2\sqrt{2})^{2}+{1}^{2}$=9=D′H2
所以OD′⊥OH,由(1)可知:AC⊥HD′,又AC⊥BD,BD∩HD′=H,
所以AC⊥平面BHD′,于是AC⊥OD′,
又由OD'⊥OH,AC∩OH=O,所以,OD'⊥平面ABC.
又由$\frac{EF}{AC}=\frac{DH}{DO}$得$EF=\frac{9}{2}$.
五边形ABCFE的面积$S=\frac{1}{2}×6×8-\frac{1}{2}×\frac{9}{2}×3=\frac{69}{4}$.
所以五棱锥D'-ABCEF体积$V=\frac{1}{3}×\frac{69}{4}×2\sqrt{2}=\frac{{23\sqrt{2}}}{2}$.

点评 本题列出直线与平面垂直的判定定理以及几何体的体积的求法,考查转化思想以及空间想象能力计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网