题目内容
设平面向量
=(cos2
,
sinx),
=(2,1),函数f(x)=
•
.
(Ⅰ)当x∈[-
,
]时,求函数f(x)的取值范围;
(Ⅱ)当f(α)=
,且-
<α<
时,求sin(2α+
)的值.
| m |
| x |
| 2 |
| 3 |
| n |
| m |
| n |
(Ⅰ)当x∈[-
| π |
| 3 |
| π |
| 2 |
(Ⅱ)当f(α)=
| 13 |
| 5 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 3 |
考点:三角函数中的恒等变换应用,平面向量数量积的运算,正弦函数的定义域和值域
专题:三角函数的图像与性质,平面向量及应用
分析:(Ⅰ)由向量数量积的坐标运算求得函数f(x)并化简,然后结合x的范围求得函数f(x)的取值范围;
(Ⅱ)由f(α)=
,且-
<α<
求得sin(α+
),cos(α+
)的值,再由倍角公式求得sin(2α+
)的值.
(Ⅱ)由f(α)=
| 13 |
| 5 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
解答:
解析:(Ⅰ)∵
=(cos2
,
sinx),
=(2,1),
∴f(x)=(cos2
,
sinx) •(2, 1)=2cos2
+
sinx
=cosx+
sinx+1=2sin(x+
)+1.
当x∈[-
,
] 时,x+
∈[-
,
],
则-
≤sin(x+
)≤1,0≤2sin(x+
)+1≤3,
∴f(x)的取值范围是[0,3];
(Ⅱ)由f(α)=2sin(α+
)+1=
,得sin(α+
)=
,
∵-
<α<
,
∴-
<α+
<
,得cos(α+
)=
,
∴sin(2α+
)=sin[2(α+
)]=2sin(α+
)cos(α+
)=2×
×
=
.
| m |
| x |
| 2 |
| 3 |
| n |
∴f(x)=(cos2
| x |
| 2 |
| 3 |
| x |
| 2 |
| 3 |
=cosx+
| 3 |
| π |
| 6 |
当x∈[-
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
则-
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
∴f(x)的取值范围是[0,3];
(Ⅱ)由f(α)=2sin(α+
| π |
| 6 |
| 13 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
∵-
| 2π |
| 3 |
| π |
| 6 |
∴-
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| 3 |
| 5 |
∴sin(2α+
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 4 |
| 5 |
| 3 |
| 5 |
| 24 |
| 25 |
点评:本题考查平面向量数量积的运算,考查了三角函数中的恒等变换的应用,训练了由已知三角函数的值求其它三角函数值,是中档题.
练习册系列答案
相关题目