ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾¹ýµãM£¨1£¬$\frac{3}{2}$£©£¬ÆäÀëÐÄÂÊΪ$\frac{1}{2}$£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+m£¨m¡Ù0£¬|k|¡Ü$\frac{1}{2}$£©ÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÒÔÏß¶ÎOA£¬OBΪÁÚ±ß×÷ƽÐÐËıßÐÎOAPB£¬ÆäÖж¥µãPÔÚÍÖÔ²CÉÏ£¬OÎª×ø±êԵ㣮ÇómµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬ÕûÀíµÃ£º3a2=4b2£¬¢ÙÔÙ½«×ø±êµãM£¨1£¬$\frac{3}{2}$£©£¬´úÈëÍÖÔ²·½³Ì¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©¶ÔkÐèÒª·Ök=0ºÍk¡Ù0Á½ÖÖÇé¿öÌÖÂÛ£®ÆäÖÐk=0ʱ£¬½ÏÒ×Çó½â£»k¡Ù0ʱ£¬ÐèÒª½«ÍÖÔ²·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢µÃµ½¹ØÓÚxµÄ¶þ´Î·½³Ì£¬ÔÚÆ½ÐÐËıßÐÎOAPBÖУ¬$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬Óɴ˼´¿ÉµÃµ½ÈýµãµÄ×ø±ê¹ØÏµ£¬½«ØOPØ=$\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$=$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}+\frac{36{m}^{2}}{£¨3+4{k}^{2}£©^{2}}}$£¬ÓÃkÀ´±íʾ£¬ÓÉÌâÖÐkµÄ·¶Î§¼´¿ÉÈ·¶¨ØOPصÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£ºÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬ÕûÀíµÃ£º3a2=4b2£¬¢Ù
ÓÖµãM£¨1£¬$\frac{3}{2}$£©£¬ÔÚÍÖÔ²CÉÏ£¬
¡à$\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1$¢Ú
ÓÉ¢Ù¢Ú½âµÃ£ºa2=4£¬b2=3£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©µ±k=0ʱ£¬P£¨0£¬2m£©ÔÚÍÖÔ²CÉÏ£¬½âµÃ£ºm=¡À$\frac{\sqrt{3}}{2}$£¬
¡àØOPØ=$\sqrt{3}$£¬
µ±k¡Ù0ʱ£¬Ôò$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
ÏûÈ¥y£¬»¯¼òÕûÀíµÃ£º£¨3+4k2£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨3+4k2£©£¨4m2-12£©=48£¨3+4k2-m2£©£¾0£¬¢Û
ÉèA£¬B£¬PµãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬£¨x0£¬y0£©£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{8km}{3+4{k}^{2}}$
ÔòÓÉÒÔÏß¶ÎOA£¬OBΪÁÚ±ß×÷ƽÐÐËıßÐÎOAPB£¬
¡àx0=x1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬y0=y1+y2=k£¨x1+x2£©+2m=$\frac{6m}{3+4{k}^{2}}$£¬
ÓÉÓÚµãPÔÚÍÖÔ²CÉÏ£¬
¡à$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$£¬
´Ó¶ø$\frac{16{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}$+$\frac{12{m}^{2}}{£¨3+4{k}^{2}£©^{2}}$=1£¬
»¯¼òµÃ£º4m2=3+4k2£¬¾¼ìÑéÂú×ã¢Ûʽ£¬
ÓÖØOPØ=$\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$=$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}+\frac{36{m}^{2}}{£¨3+4{k}^{2}£©^{2}}}$£¬
=$\sqrt{\frac{4{m}^{2}£¨16{k}^{2}+9£©}{£¨3+4{k}^{2}£©^{2}}}$£¬
=$\sqrt{\frac{16{k}^{2}+9}{4{k}^{2}+3}}$£¬
=$\sqrt{4-\frac{3}{4{k}^{2}+3}}$£¬
ÓÉ0£¼|k|¡Ü$\frac{1}{2}$£¬
¡à3£¼4k2+3¡Ü4£¬Ôò$\frac{3}{4}$¡Ü$\frac{3}{4{k}^{2}+3}$£¼1£¬
¹Ê$\sqrt{3}$£¼ØOPØ¡Ü$\frac{\sqrt{13}}{2}$£¬
×ÛÉÏ£¬ØOPصÄȡֵ·¶Î§ÊÇ[$\sqrt{3}$£¬$\frac{\sqrt{13}}{2}$]£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿µÄ×ø±ê±íʾ£¬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 20x=M | B£® | 20x=M£¨1+5%£©20 | C£® | 20x£¼M£¨1+5%£©20 | D£® | 20x£¾M£¨1+5%£©20 |