题目内容

8.已知数列{an}满足sn=$\frac{n}{2}({{a_{n+1}}+1})$且a1=3,令bn=$\frac{a_n}{n}$
(1)求数列{bn}的通项公式;
(2)令cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,数列{cn}的前n项和为Tn,若Tn≤M对?n∈N都成立,求M的最小值.

分析 (1)数列{an}满足sn=$\frac{n}{2}({{a_{n+1}}+1})$,利用当n≥2时,an=sn-sn-1化为nan+1-(n+1)an+1=0,由于bn=$\frac{a_n}{n}$,可得an=nbn,代入可得bn+1-bn=-$\frac{1}{n(n+1)}$=$\frac{1}{n+1}-\frac{1}{n}$.即可得出.
(2)由(1)可得:bn=$\frac{a_n}{n}$=$\frac{2n+1}{n}$.可得an=2n+1.cn=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,即可得出数列{cn}的前n项和为Tn,利用不等式的性质即可得出.

解答 解:(1)∵数列{an}满足sn=$\frac{n}{2}({{a_{n+1}}+1})$,
∴当n≥2时,an=sn-sn-1=$\frac{n}{2}({{a_{n+1}}+1})$-$\frac{n-1}{2}({a}_{n}+1)$,
化为nan+1-(n+1)an+1=0,
∵bn=$\frac{a_n}{n}$,∴an=nbn
∴n(n+1)bn+1-n(n+1)bn+1=0,
∴bn+1-bn=-$\frac{1}{n(n+1)}$=$\frac{1}{n+1}-\frac{1}{n}$.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=$(\frac{1}{n}-\frac{1}{n-1})$+$(\frac{1}{n-1}-\frac{1}{n-2})$+…+$(\frac{1}{2}-1)$+3
=$\frac{1}{n}+2$
=$\frac{2n+1}{n}$.
(2)由(1)可得:bn=$\frac{a_n}{n}$=$\frac{2n+1}{n}$.
∴an=2n+1.
cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
数列{cn}的前n项和为Tn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$,
若Tn≤M对?n∈N都成立,
∴$M≥\frac{1}{6}$.
∴M的最小值为$\frac{1}{6}$.

点评 本题考查了递推关系的应用、“裂项求和”、“放缩法”、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网