题目内容

18.已知对任意的x≥1,均有lnx-a(1-$\frac{1}{x}$)≥0.求实数a的取值范围.

分析 化简可得a(x-1)≤xlnx,从而讨论,当x>1时,化为a≤$\frac{xlnx}{x-1}$,从而令f(x)=$\frac{xlnx}{x-1}$,从而化为函数的最值问题.

解答 解:∵ln x-a(1-$\frac{1}{x}$)≥0,
∴ln x-a$\frac{x-1}{x}$≥0,
∴a(x-1)≤xlnx,
①当x=1时,上式成立;
②当x>1时,上式可化为a≤$\frac{xlnx}{x-1}$,
令f(x)=$\frac{xlnx}{x-1}$,则f′(x)=$\frac{(lnx+1)(x-1)-xlnx}{(x-1)^{2}}$=$\frac{x-lnx-1}{(x-1)^{2}}$,
令g(x)=x-lnx-1,则g′(x)=1-$\frac{1}{x}$>0,
故g(x)在(1,+∞)上是增函数,
故g(x)>g(1)=1-0-1=0,
故f′(x)>0,
故f(x)=$\frac{xlnx}{x-1}$在(1,+∞)上是增函数,
而$\underset{lim}{x→{1}^{+}}$f(x)=$\underset{lim}{x→{1}^{+}}$$\frac{xlnx}{x-1}$=$\underset{lim}{x→{1}^{+}}$$\frac{lnx+1}{1}$=1,
故a≤1;
综上所述,a≤1.

点评 本题考查了恒成立问题与最值问题的应用,同时考查了分类讨论的思想应用.同时考查了洛比达法则的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网