题目内容

12.已知一家电子公司生产某种电子产品的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该电子产品x千件能全部销售完,每千件的销售收入为g(x)万元,且g(x)=$\left\{\begin{array}{l}{13.5-\frac{1}{30}{x}^{2}(0<x≤10)}\\{\frac{168}{x}-\frac{2000}{3{x}^{2}}(x>10)}\end{array}\right.$
(Ⅰ)写出月利润y(万元)关于月产量x(千件)的函数解析式;
(Ⅱ)月产量为多少千件时,该公司在这一产品的生产中所获利润最大?并求出最大利润.

分析 (Ⅰ)根据年利润=年销售收入-年总成本,可得年利润y(万元)关于年产量x(万件)的函数关系式;
(Ⅱ)由(Ⅰ)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.

解答 解:(Ⅰ)当0<x≤10时,y=x(13.5-$\frac{1}{30}$x2)-20-5.4x=8.1x-$\frac{1}{30}$x3-20,
当x>10时,y=($\frac{168}{x}$--$\frac{2000}{3{x}^{2}}$)x-20-5.4x=148-2($\frac{1000}{3x}$+2.7x),
∴y=$\left\{\begin{array}{l}{8.1x-\frac{1}{30}{x}^{3}-20,0<x≤10}\\{148-2(\frac{1000}{3x}+2.7x),x>10}\end{array}\right.$,
(Ⅱ)①当0<x≤10时,y′=8.1-$\frac{1}{10}$x2,令y′=0可得x=9,
x∈(0,9)时,y′>0;x∈(9,10]时,y′<0,
∴x=9时,ymax=28.6万元;
②当x>10时,y=148-2($\frac{1000}{3x}$+2.7x)≤148-120=22(万元)
(当且仅当x=$\frac{100}{9}$时取等号)…(10分)
综合①②知:当x=9时,y取最大值…(11分)
故当年产量为9万件时,服装厂在这一高科技电子产品的生产中获年利润最大…(12分)

点评 本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网