题目内容

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与椭圆
x2
25
+
y2
9
=1的焦点相同,若过右焦点F且倾斜角为60°的直线与双曲线的右支有两个不同的交点,则此双曲线的半实轴长的取值范围是
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,求得a和b的不等式关系,进而转化成a和c的不等式关系,求得离心率的一个范围,最后根据双曲线的离心率大于1,综合可得求得e的范围.
解答: 解:由已知得双曲线的半焦距c=4,且
b
a
<tan60°

所以
b2
a2
=
c2-a2
a2
=
16
a2
-1<3
,a2>4,
解得a>2,又a<c,
所以2<a<4.                                                                                                 故答案为:2<a<4.
点评:本题主要考查了双曲线的简单性质、圆锥曲线的共同特征.在求双曲线实半轴长的取值范围时,注意其值要小于4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网