ÌâÄ¿ÄÚÈÝ
4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=6sin¦È£®£¨ I£©ÇóÖ±½Ç×ø±êÏÂÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôµãP£¨l£¬2£©£¬ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA£¬B£¬Çó|PA|+|PB|µÄÖµ£®
·ÖÎö £¨I£©Ô²CµÄ·½³ÌΪ¦Ñ=6sin¦È£¬¼´¦Ñ2=6¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬Åä·½¿ÉµÃ±ê×¼·½³Ì£®
£¨II£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2-7=0£¬½âµÃt1£¬t2£®ÀûÓÃ|PA|+|PB|=|t1-t2|£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©Ô²CµÄ·½³ÌΪ¦Ñ=6sin¦È£¬¼´¦Ñ2=6¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=6y£¬Å䷽Ϊx2+£¨y-3£©2=9£®
£¨II£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëÔ²µÄ·½³Ì¿ÉµÃ£ºt2-7=0£¬½âµÃt1=$\sqrt{7}$£¬t2=-$\sqrt{7}$£®
¡à|PA|+|PB|=|t1-t2|=2$\sqrt{7}$£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏߵIJÎÊý·½³Ì¼°ÆäÓ¦Óá¢Ô²µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | f£¨x£©=1£¬g£¨x£©=x0 | B£® | f£¨x£©=|x|£¬g£¨t£©=$\sqrt{{t}^{2}}$ | ||
| C£® | f£¨x£©=$\frac{{x}^{2}-1}{x-1}$£¬g£¨x£©=x+1 | D£® | f£¨x£©=lg£¨x+1£©+lg£¨x-1£©£¬g£¨x£©=lg£¨x2-1£© |
| A£® | £¨0£¬$\frac{2\sqrt{6}}{5}$] | B£® | [$\frac{\sqrt{3}}{2}$£¬1£© | C£® | [$\frac{2\sqrt{6}}{5}$£¬1£© | D£® | £¨0£¬$\frac{\sqrt{3}}{2}$] |