题目内容
不等式
>0的解集是( )
| x-2 |
| 1-x |
| A、{x|x>2或x<1} |
| B、{x|1<x<2} |
| C、{x|-1<x<2} |
| D、{x|x>2或x<-1} |
考点:其他不等式的解法
专题:不等式的解法及应用
分析:不等式
>0等价于 (x-2)(x-1)<0,由此求得不等式的解集.
| x-2 |
| 1-x |
解答:
解:不等式
>0等价于 (x-2)(1-x)>0,即(x-2)(x-1)<0,解得 1<x<2,
故选:B.
| x-2 |
| 1-x |
故选:B.
点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于基础题.
练习册系列答案
相关题目
在线性回归模型中,下列叙述正确的是( )
| A、比较两个模型的拟合效果,可以通过比较它们的残差平方和的大小来确定,残差平方和越大的模型,拟合效果越好 |
| B、在残差图中,残差点所在的带状区域的宽度越窄,拟合效果越好 |
| C、在残差图中,残差点所在的带状区域的宽度越宽,拟合效果越好 |
| D、通过回归方程得到的预报值就是预报变量的精确值 |
一个物体的运动方程为s=1-t+2t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是( )
| A、9米/秒 | B、10米/秒 |
| C、11米/秒 | D、12米/秒 |
采用系统抽样方法从学号为1到50的50名学生中选取5名参加测试,则所选5名学生的学号可能是( )
| A、1,2,3,4,5 |
| B、5,26,27,38,49 |
| C、2,4,6,8,10 |
| D、5,15,25,35,45 |
在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为
,则实数m=( )
| 5 |
| 6 |
| A、1 | B、2 | C、3 | D、4 |
已知函数f(x)=
,则不等式f(a2-4)>f(3a)的解集为( )
|
| A、(2,6) |
| B、(-1,4) |
| C、(1,4) |
| D、(-3,5) |
A、B、C三点不共线,D为BC的中点,对于平面ABC内任意一点O都有
=2
-
-
,则( )
| OP |
| OA |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
如图,D、E、F分别是边AB、BC、CA上的中点,则
+
-
=( )

| DE |
| DA |
| BE |
A、
| ||
B、
| ||
C、
| ||
D、
|