题目内容

7.若圆${C_1}:{x^2}+{y^2}+ax=0$与圆${C_2}:{x^2}+{y^2}+2ax+ytanθ=0$都关于直线2x-y-1=0对称,则sinθcosθ=-$\frac{2}{5}$,.

分析 求出圆心坐标,根据圆关于直线对称,得到圆心在直线上,得到tanθ=-2,利用1的代换进行求解即可.

解答 解:圆C1:x2+y2+ax=0的圆心坐标为(-$\frac{a}{2}$,0),圆C2:x2+y2+2ax+ytanθ=0的圆心坐标为(-a,-$\frac{tanθ}{2}$),
∵两圆都关于直线2x-y-1=0对称,
∴圆心都在方程为2x-y-1=0的直线上,
则-$\frac{a}{2}$×2-1=0,得a=-1,
-2a+$\frac{tanθ}{2}$-1=0,即2+$\frac{tanθ}{2}$-1=0则$\frac{tanθ}{2}$=-1,即tanθ=-2,
则sinθcosθ=$\frac{sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{tanθ}{1+ta{n}^{2}θ}$=-$\frac{2}{5}$,
故答案为-$\frac{2}{5}$.

点评 本题主要考查三角函数值的化简和计算,根据圆的对称性,得到a,tanθ的值是解决本题的关键.综合性较强.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网