题目内容

定义在R上奇函数f(x)满足,当x>0时,f(x)=2014x+log2014x,则方程f(x)=0实解个数为(  )
A、1B、2C、3D、5
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:首先,根据奇函数的性质,得到f(0)=0,然后,当x>0时,在同一坐标系内画出函数y=-2014x和y=log2014x,可以得到图象有一个交点,得到方程有一个实根,然后,根据对称性得到相应的方程的根的个数.
解答: 解:∵在R上的奇函数f(x),
∴f(0)=0,
∴x=0是方程f(x)=0的一个实根,
当x>0时,f(x)=2014x+log2014x=0,
∴-2014x=log2014x,
设函数y=-2014x y=log2014x,
在同一坐标系中作出它们的图象如下:

∴当x>0时,该方程有一个实根,
又∵函数为奇函数,
∴它们的图象关于坐标原点对称,
∴当x<0时,该方程也有一个实根,
总之,该方程有三个实根,
故选:C
点评:本题综合考查了函数为奇函数及其性质,属于中档题,掌握数形结合思想在求解问题中的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网