题目内容

已知双曲线的左右焦点分别为F1,F2,在左支上过F1的弦AB的长为8,若实轴长为12,则△ABF2的周长是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由双曲线方程求得a=4,由双曲线的定义可得 AF2+BF2 =22,△ABF2的周长是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,计算可得答案.
解答: 解:由题意可得2a=12,由双曲线的定义可得 
AF2-AF1=2a,BF2 -BF1=2a,∴AF2+BF2 -AB=4a=24,即AF2+BF2 -8=16,AF2+BF2 =24.
△ABF2(F2为右焦点)的周长是 ( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=24+8=32.
故答案为32.
点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,求出AF2+BF2 =22 是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网