题目内容
9.有下列关系:其中有相关关系的是( )①人的年龄与他(她)拥有的财富之间的关系;
②曲线上的点与该点的坐标之间的关系;
③苹果的产量与气候之间的关系;
④森林中的同一种树木,其横断面直径与高度之间的关系.
| A. | ①②③ | B. | ①② | C. | ①③④ | D. | ②③ |
分析 根据题意,结合相关关系的定义,依次分析题目所给四个关系是否符合相关关系的定义,即可得答案.
解答 解:根据题意,相关关系是一种不确定的关系,是非随机变量与随机变量之间的关系,
分析可得:①③④是相关关系,②是函数关系;
故选:C.
点评 本题考查变量相关关系的判定,注意区分相关关系与函数关系.
练习册系列答案
相关题目
20.函数f(x)=$\frac{{2\sqrt{2}sin(x+\frac{π}{4})+4{x^2}-x}}{{2{x^2}+cosx}}$的最大值为M,最小值为N,则有( )
| A. | M-N=4 | B. | M-N=0 | C. | M+N=4 | D. | M+N=0 |
17.函数$f(x)=\sqrt{3}cos3x-sin3x$,则f(x)的最小正周期为( )
| A. | π | B. | 2π | C. | $\frac{3π}{2}$ | D. | $\frac{2π}{3}$ |
4.为了得到$y=cos({\frac{1}{2}x+\frac{π}{6}})$的图象,只需将y=cos$\frac{1}{2}$x的图象( )
| A. | 向左平移$\frac{π}{6}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向左平移$\frac{π}{3}$个单位长度 | D. | 向右平移$\frac{π}{3}$个单位长度 |
14.记等差数列{an}的前n项和为Sn,利用倒序求和的方法,可将Sn表示成首项a1、末项an与项数n的一个关系式,即公式Sn=$\frac{n({a}_{1}+{a}_{2})}{2}$;类似地,记等比数列{bn}的前n项积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,可将Tn表示成首项b1、末项bn与项数n的一个关系式,即公式Tn=( )
| A. | $\frac{n({b}_{1}+{b}_{n})}{2}$ | B. | $\frac{({b}_{1}+{b}_{n})^{n}}{2}$ | C. | $\root{n}{{b}_{1}{b}_{2}}$ | D. | (b1bn)${\;}^{\frac{n}{2}}$ |
1.在△ABC中,已知a=1,b=$\sqrt{3}$,A=30°,则sinC的值为( )
| A. | $\frac{1}{2}$或1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 1 |
18.通过随机询问某书店110名读者对莫言的作品是否满意,得到如下的列联表:
(1)从这50名女读者中按对莫言的作品是否满意采取分层抽样,抽取一个容量为5的样本,则样本中满意与不满意的女读者各有多少名?
(2)由以上列联表,问有多大把握认为“读者性别与对莫言作品的满意度”有关?${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| 男 | 女 | 总计 | |
| 满意 | 50 | 30 | 80 |
| 不满意 | 10 | 20 | 30 |
| 总计 | 60 | 50 | 110 |
| P(K2≥k0) | 0.05 | 0.025 | 0.01 |
| k0 | 3.841 | 5.024 | 6.635 |
19.已知$\overrightarrow{a}$、$\overrightarrow{b}$为两个单位向量,则下列四个命题中正确的是( )
| A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$ | C. | $\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$ | D. | 若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$ |