题目内容
11.函数$f(x)=2{cos^2}x+cos(2x+\frac{π}{3})-1$,则函数的最小正周期为π,在[0,π]内的一条对称轴方程是x=$\frac{5π}{12}$,或x=$\frac{11π}{12}$.分析 利用三角恒等变换化简函数的解析式,再利用余弦函数的周期性以及它的图象的对称性,得出结论.
解答 解:函数$f(x)=2{cos^2}x+cos(2x+\frac{π}{3})-1$
=cos2x+cos2xcos$\frac{π}{3}$-sin2xsin$\frac{π}{3}$=$\frac{3}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x=$\sqrt{3}$cos(2x+$\frac{π}{6}$),
则函数的最小正周期为$\frac{2π}{2}$=π.
令2x+$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,结合x在[0,π]内,
可得f(x)在[0,π]内的一条对称轴方程是x=$\frac{5π}{12}$,或 x=$\frac{11π}{12}$,
故答案为:π;$x=\frac{5π}{12}$或$x=\frac{11π}{12}$.
点评 本题主要考查三角恒等变换,余弦函数的周期性以及它的图象的对称性,属于中档题.
练习册系列答案
相关题目
3.
如图一所示,由弧AB,弧AC,弧BC所组成的图形叫做勒洛三角形,它由德国机械工程专家、机械运动学家勒洛首先发现的,它的构成如图二所示,以正三角形ABCd的每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,由三段弧所围成的曲边三角形即为勒洛三角形,有一个如图一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一点是等可能的,则此箭恰好射中三角形ABC内部(即阴影部分)的概率为( )
| A. | $\frac{\sqrt{3}}{2π-\sqrt{3}}$ | B. | $\frac{\sqrt{3}}{2(π-\sqrt{3}})$ | C. | $\frac{2π-3\sqrt{3}}{2(π-\sqrt{3})}$ | D. | $\frac{2π-2\sqrt{3}}{2π-\sqrt{3}}$ |
2.用秦九韶算法计算多项式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4时的值时,运算总次数为( )
| A. | 11 | B. | 12 | C. | 26 | D. | 27 |
6.若直线y=3x与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有公共点,则双曲线的离心率的取值范围为( )
| A. | $(1,\sqrt{10})$ | B. | $(\sqrt{10},+∞)$ | C. | $({1,\sqrt{10}}]$ | D. | $[{\sqrt{10}}\right.,+∞)$ |
16.已知圆M过定点(0,1)且圆心M在抛物线x2=2y上运动,若x轴截圆M所得的弦为|PQ|,则弦长|PQ|等于( )
| A. | 2 | B. | 3 | ||
| C. | 4 | D. | 与点位置有关的值 |
20.
如图,在平行四边形ABCD中,∠BAD=$\frac{π}{3}$,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足$\frac{MD}{AD}$=$\frac{NC}{DC}$=λ,其中λ∈[0,1],则$\overrightarrow{AN}$•$\overrightarrow{BM}$的取值范围是( )
| A. | [-3,1] | B. | [-3,-1] | C. | [-1,1] | D. | [1,3] |
1.一个三角形可分为以内切圆半径为高,以原三角形三条边为底的三个三角形,类比此方法,若一个三棱锥的体积V=2,表面积S=3,则该三棱锥内切球的体积为( )
| A. | 81π | B. | 16π | C. | $\frac{32π}{3}$ | D. | $\frac{16π}{9}$ |