题目内容
3.已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…以此类推,则2018会出现在第( )个等式中.| A. | 33 | B. | 30 | C. | 31 | D. | 32 |
分析 从已知等式分析,发现规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,即可得出结论.
解答 解:①2+4=6;
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,
所以第n个等式的首项为2[1+3+…+(2n-1)]=2×$\frac{n(1+2n-1)}{2}$=2n2,
当n=31时,等式的首项为2×312=1932,
当n=32时,等式的首项为2×322=2048,
所以2018在第31个等式中,
故选:C.
点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.
练习册系列答案
相关题目
13.已知$f({2^x})=\frac{1}{x}$,则f(3)=( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{8}$ | C. | log32 | D. | log23 |
14.直线$\left\{{\begin{array}{l}{x=3+tcos{{230}°}\;\;}\\{y=-1+tsin{{230}°}}\end{array}}\right.$(t为参数)的倾斜角是( )
| A. | 30° | B. | 45° | C. | 50° | D. | 60° |
8.已知边长为2$\sqrt{3}$的菱形ABCD中,∠A=60°,现沿对角线BD折起,使得AC=3$\sqrt{3}$,此时点A,B,C,D在同一个球面上,则该球的表面积为( )
| A. | 20π | B. | 24π | C. | 28π | D. | 32π |
3.在△ABC中,a=$\sqrt{3}$b,A=120°,则B的大小为( )
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |