题目内容

8.已知边长为2$\sqrt{3}$的菱形ABCD中,∠A=60°,现沿对角线BD折起,使得AC=3$\sqrt{3}$,此时点A,B,C,D在同一个球面上,则该球的表面积为(  )
A.20πB.24πC.28πD.32π

分析 正确作出图形,利用勾股定理建立方程,求出四面体的外接球的半径,即可求出四面体的外接球的表面积.

解答 解:如图所示,取BD的中点F,连接AF,CF,则AF=CF=3,
∵AC=3$\sqrt{3}$,
∴∠AFC=120°,∠AFE=60°,
∴AE=$\frac{3\sqrt{3}}{2}$,EF=$\frac{3}{2}$
设OO′=x,则
∵O′B=2,O′F=1,
∴由勾股定理可得R2=x2+4=($\frac{3}{2}$+1)2+($\frac{3\sqrt{3}}{2}$-x)2
∴R2=7,
∴四面体的外接球的表面积为4πR2=28π,
故选:C.

点评 本题考查四面体的外接球的表面积,考查学生的计算能力,正确求出四面体的外接球的半径是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网