题目内容
已知正三角形ABC的边长为,平面ABC内的动点P,M满足,,则的最大值是
(A) (B) (C) (D)
在△ABC中,角A,B,C的对边分别为a,b,c,已知
(Ⅰ)证明:a+b=2c;
(Ⅱ)求cosC的最小值.
在△ABC中,角A,B,C所对的边分别是a,b,c,且.
(Ⅰ)证明:;
(Ⅱ)若,求.
设函数f(x)=ax2-a-lnx,=,其中a∈R,e=2.718…为自然对数的底数。
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立。
若函数f(x)是定义R上的周期为2的奇函数,当0<x<1时,f(x)=,则f()+f(2)= 。
为了得到函数y=sin的图象,只需把函数y=sinx的图象上所有的点
(A)向左平行移动个单位长度
(B)向右平行移动个单位长度
(C)向上平行移动个单位长度
(D)向下平行移动个单位长度
如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:EF⊥平面ACFD;
(Ⅱ)求二面角B-AD-F的平面角的余弦值.
设函数=,.证明:
(Ⅰ);
(Ⅱ).
函数y=的定义域是 .