题目内容
设点,,,是球表面上的四个点,,,两两互相垂
直,且,则球的表面积为 .
函数f(x)的部分图像如图所示,则f(x)的解析式可以是( )
A.f(x)=x+sinx B.f(x)=
C.f(x)=xcosx D.f(x)=x(x-)(x-)
已知集合,.若,则实数的取值范围是 .
已知函数,,其中函数的图象在点处的切线平行于轴.
(1)确定与的关系;
(2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点,求证:.
如图,已知点,直线,为平面内的动点,过作的垂线,垂足为,且.
(1)求动点的轨迹的方程;
(2)设是上的任意一点,过作轨迹的切线,切点为、.
①求证:、、三点的横坐标成等差数列;
②若,,求的值.
已知,则 .
某商场为促销要准备一些正三棱锥形状的装饰品,用半径为的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为,体积为.
(1)求关于的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,的最大值是多少?并求此时的
值.
在等差数列和等比数列中,已知,那么满足的
的所有取值构成的集合是 .
已知点(其中,点的轨迹记为曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点在曲线上.
(Ⅰ)求曲线的极坐标方程和曲线的直角坐标方程;
(Ⅱ)当时,求曲线与曲线的公共点的极坐标.