题目内容
19.正实数ab满足$\frac{1}{a}$+$\frac{2}{b}$=1,则(a+2)(b+4)的最小值为( )| A. | 16 | B. | 24 | C. | 32 | D. | 40 |
分析 正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=1,利用基本不等式的性质得ab≥8.把b+2a=ab代入(a+2)(b+4)=ab+2(b+2a)+8=3ab+8,即可得出.
解答 解:正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=1,
∴1≥2$\sqrt{\frac{2}{ab}}$,解得ab≥8,当且仅当b=2a=4时取等号.
b+2a=ab.
∴(a+2)(b+4)=ab+2(b+2a)+8=3ab+8≥32.
故选:C.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.已知集合A={1,4},B={y|y=log2x,x∈A},则A∪B=( )
| A. | {1,4} | B. | {0,1,4} | C. | {0,2} | D. | {0,1,2,4} |
7.已知O为坐标原点,F是双曲线$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则 Γ的离心率为( )
| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{4}{3}$ |
14.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东40°,则灯塔A与灯塔B之间的距离为( )
| A. | $\sqrt{3}$akm | B. | 2akm | C. | $\sqrt{5}$akm | D. | $\sqrt{7}$akm |
11.函数y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的递减区间为( )
| A. | [$\frac{3}{4}$,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | (-∞,1) | D. | (1,+∞) |
8.若直线y=x+b与曲线(x-2)2+(y-3)2=4(0≤x≤4,1≤y≤3)有公共点,则实数b的取值范围是( )
| A. | [1-2$\sqrt{2}$,3] | B. | [1-$\sqrt{2}$,3] | C. | [-1,1+2$\sqrt{2}$] | D. | [1-2$\sqrt{2}$,1+2$\sqrt{2}$] |
9.已知集合A={1,2,3},B={2,3},则( )
| A. | A?B | B. | A=B | C. | A∪B=∅ | D. | B?A |