题目内容
14.已知函数f(x)=$\frac{alnx}{x}$(a∈R)的图象与直线x-2y=0相切,当函数g(x)=f(f(x))-t恰有一个零点时,实数t的取值范围是{0}.分析 先利用函数f(x)=$\frac{alnx}{x}$(a∈R)的图象与直线x-2y=0相切,求出a,再作出f(x)的图象,利用当函数g(x)=f(f(x))-t恰有一个零点时,即可实数t的取值范围.
解答
解:由题意,f′(x)=$\frac{a(1-lnx)}{{x}^{2}}$,
取切点(m,n),则n=$\frac{alnm}{m}$,m=2n,
$\frac{a(1-lnm)}{{m}^{2}}$=$\frac{1}{2}$,
∴m=$\sqrt{e}$,a=e.∴f(x)=$\frac{elnx}{x}$,
f′(x)=$\frac{e(1-lnx)}{{x}^{2}}$,
函数f(x)在(0,e)上单调递增,(e,+∞)上单调递减,
f(1)=0,x→+∞,f(x)→0,
由于f(e)=1,f(1)=0,
∴当函数g(x)=f(f(x))-t恰有一个零点时,实数t的取值范围是{0},
故答案为:{0}.
点评 本题考查导数知识的运用,考查导数的几何意义,考查数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
4.同时掷两枚骰子,得到的点数和为6的概率是( )
| A. | $\frac{5}{12}$ | B. | $\frac{5}{36}$ | C. | $\frac{1}{9}$ | D. | $\frac{5}{18}$ |
5.已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则$\overrightarrow{ED}•\overrightarrow{FC}$等于( )
| A. | $\frac{1}{8}$ | B. | $-\frac{1}{8}$ | C. | $\frac{{\sqrt{3}}}{8}$ | D. | $-\frac{{\sqrt{3}}}{8}$ |
19.已知全集U={-2,-1,0,1,2},集合M={0,1},N={0,1,2},则(∁UM)∩N=( )
| A. | {0,2} | B. | {1,2} | C. | {2} | D. | {0} |
6.已知函数f(x)=5sin(2x+α) 的图象关于y轴对称,则α=( )
| A. | kπ,k∈z | B. | (2k+1)π,k∈z | C. | 2kπ+$\frac{π}{2}$,k∈z | D. | kπ+$\frac{π}{2}$,k∈z |