题目内容
已知pa3=qb3=rc3,
+
+
=1,求证:(pa2+qb2+rc2)
=p
+q
+r
.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
考点:平均值不等式在函数极值中的应用
专题:证明题
分析:设pa3=qb3=rc3=k,则有pa2+qb2+rc2=
+
+
=k,又p=
,q=
,r=
,则p
+q
+r
=
+
+
=k
,比较左右两边,即可得证.
| k |
| a |
| k |
| b |
| k |
| c |
| k |
| a3 |
| k |
| b3 |
| k |
| c3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
k
| ||
| a |
k
| ||
| b |
k
| ||
| c |
| 1 |
| 3 |
解答:
证明:设pa3=qb3=rc3=k,
则pa2=
,qb2=
,rc2=
,
则有pa2+qb2+rc2=
+
+
,
由于
+
+
=1,
则pa2+qb2+rc2=k,
又p=
,q=
,r=
,
则p
+q
+r
=
+
+
=k
,
故有(pa2+qb2+rc2)
=p
+q
+r
.
则pa2=
| k |
| a |
| k |
| b |
| k |
| c |
则有pa2+qb2+rc2=
| k |
| a |
| k |
| b |
| k |
| c |
由于
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
则pa2+qb2+rc2=k,
又p=
| k |
| a3 |
| k |
| b3 |
| k |
| c3 |
则p
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
k
| ||
| a |
k
| ||
| b |
k
| ||
| c |
| 1 |
| 3 |
故有(pa2+qb2+rc2)
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
点评:本题考查恒等式的证明,考查运用换元法证明等式,注意连等式通常运用换元法,考查推理能力,属于中档题.
练习册系列答案
相关题目