题目内容
等边三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为
,此时四面体ABCD外接球体积为 .
| 2 |
考点:球的体积和表面积
专题:球
分析:三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出正三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的体积即可.
解答:
解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱ABC-A1B1C1的中,底面边长为1,1,
,
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为1,
底面中心到底面三角形的顶点的距离为:
∴球的半径为r=
=
.
四面体ABCD外接球体积为:
r3=
×(
)3=
.
故答案为:
.
三棱柱ABC-A1B1C1的中,底面边长为1,1,
| 2 |
由题意可得:三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心为O,外接球的半径为r,
球心到底面的距离为1,
底面中心到底面三角形的顶点的距离为:
| ||
| 2 |
∴球的半径为r=
(
|
| ||
| 2 |
四面体ABCD外接球体积为:
| 4π |
| 3 |
| 4π |
| 3 |
| ||
| 2 |
5
| ||
| 6 |
故答案为:
5
| ||
| 6 |
点评:本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
练习册系列答案
相关题目
函数y=sin(2x-
)的一条对称轴为( )
| π |
| 6 |
A、x=-
| ||
B、x=
| ||
C、x=
| ||
D、x=-
|
设f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
3),c=f(2
),则a,b,c的大小关系是( )
| 1 |
| 2 |
| 2 |
| A、c<a<b |
| B、c<b<a |
| C、b<c<a |
| D、a<b<c |
在△ABC中,若a、b、c分别为角A、B、C所对的边,且cos2B+cosB+cos(A-C)=1,则有( )
| A、a、c、b 成等比数列 |
| B、a、c、b 成等差数列 |
| C、a、b、c 成等差数列 |
| D、a、b、c成等比数列 |