题目内容

以Sn表示等差数列{an}的前n项和,若S5>S6,则下列不等关系不一定成立的是(  )
A、2a3>3a4
B、5a5>a1+6a6
C、a5+a4-a3<0
D、a3+a6+a12<2a7
考点:等差数列的性质
专题:等差数列与等比数列
分析:a5>0,a6<0,这个数列是递减数列,公差d<0.由此入手对各个选项逐个进行分析,能求出结果.
解答: 解:∵Sn表示等差数列{an}的前n项和,S5>S6
∴S6-S5=a6<0,
则2a3>3a4有可能成立,即A有可能成立;
∵5a5-(a1+6a6
=5(a1+4d)-[a1+6(a1+5d)]
=-2a1-10d
=-2a6<0,
∴5a5>a1+6a6不成立,即B不成立;
∵a5>0,a4>0,a3>0,
∴a5+a4-a3<0有可能成立,即C是有可能成立;
∵a3+a6+a12-2a7=(3a1+18d)-(2a1+12d)=a1+6d=a7<0,
∴a3+a6+a12<2a7,故D成立.
故选:B.
点评:本题考查等差数列的通项公式和前n项和公式的应用是中档题,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网