题目内容

已知两个非零向量
a
b
,定义|
a
×
b
|=|
a
||
b
|sinθ,其中θ为
a
b
的夹角,若
a
=(0,2),
b
=(-3,4),则|
a
×
b
|的值为(  )
A、-8B、-6C、8D、6
考点:平面向量数量积的运算
专题:平面向量及应用
分析:根据给出的两向量的坐标,求出对应的模,运用向量数量积公式求两向量夹角的余弦值,则正弦值可求,最后直接代入定义即可.
解答: 解:∵
a
=(0,2),
b
=(-3,4),
|
a
|
=2,|
b
|
=5,
a
b
=8
∵cosθ=
a
b
2|
a
||
b
|
=
8
10
=
4
5

∵θ∈[0,π],
∴sinθ=
3
5

∴|
a
×
b
|=|
a
||
b
|sinθ=2×5×
3
5
=6.
故选:D.
点评:本题考查了平面向量的坐标运算,解答的关键是熟记两向量的数量积公式,是新定义中的基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网