题目内容

4.若2sin2x+cos2x=1(x≠kπ,k∈Z),则$\frac{2co{s}^{2}x+sin2x}{1+tanx}$的值为$\frac{2}{5}$.

分析 由二倍角公式和已知式子可得tanx=2,弦化切并整体代入计算可得.

解答 解:∵2sin2x+cos2x=1,∴4sinxcosx=1-cos2x=2sin2x,
解得sinx=0或2cosx-sinx=0,∵x≠kπ,k∈Z,
∴sinx=0不成立,故2cosx-sinx=0,即tanx=2,
∴$\frac{2co{s}^{2}x+sin2x}{1+tanx}$=$\frac{1}{3}$(2cos2x+sin2x)
=$\frac{1}{3}$•$\frac{2co{s}^{2}x+2sinxcosx}{co{s}^{2}x+si{n}^{2}x}$=$\frac{1}{3}$•$\frac{2+2tanx}{1+ta{n}^{2}x}$=$\frac{2}{5}$,
故答案为:$\frac{2}{5}$.

点评 本题考查同角三角函数基本关系,涉及二倍角公式以及弦化切的思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网