题目内容

已知△ABC中,A(1,3),AB、AC边上的中线所在直线方程分别为x-2y+1=0和y-1=0,则边BC所在直线方程为
 
考点:直线的一般式方程
专题:直线与圆
分析:由题意设B(xB,1),则AB的中点D(
xB+1
2
,2),由D在中线CD可得
xB+1
2
-2×2+1=0,解方程可得B(5,1),同理可得C(-3,-1),易得直线的方程.
解答: 解:由题意设B(xB,1),则AB的中点D(
xB+1
2
,2)
∵D在中线CD:x-2y+1=0上,∴
xB+1
2
-2×2+1=0,
解得xB=5,即B(5,1).
同理∵点C在直线x-2y+1=0上,可以设C为(2yC-1,yC),
yC+3
2
=1可解得yC=-1,即C(-3,-1).
∴直线BC的方程为y-1=
-1-1
-3-5
(x-5),
化为一般式可得x-4y-1=0,
故答案为:x-4y-1=0
点评:本题考查直线的一般式方程,求出B和C的坐标是解决问题的关键,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网