题目内容
利用极限存在准则证明
[
+
+…+
]=1.
| lim |
| n→∞ |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
考点:数列的极限
专题:计算题
分析:由于
<
<
,求和得
<
+
+…+
<1.对两端求极限,均为1,即可得证.
| 1 |
| n+1 |
| 1 | ||
|
| 1 |
| n |
| n |
| n+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
解答:
证明:∵
<
<
,
∴
+
+…+
<
+
+…+
<
+
+…+
即有
<
+
+…+
<1.
由于
=1,
1=1,
则有
[
+
+…+
]=1.
| 1 |
| n+1 |
| 1 | ||
|
| 1 |
| n |
∴
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
即有
| n |
| n+1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
由于
| lim |
| n→∞ |
| n |
| n+1 |
| lim |
| n→∞ |
则有
| lim |
| n→∞ |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
点评:本题考查数列极限的证明,考查放缩法,利用两端的极限,从而得到所求的极限,是一道中档题.
练习册系列答案
相关题目