题目内容
已知数列{an}的前n项和为Sn,且满足Sn+1=4an+2,(n∈N*),a1=2,
(1)设bn=an+1-λan,数列{bn}为等比数列,求实数λ的值;
(2)设cn=
(n∈N*),求数列{cn}的通项公式;
(3)令dn=(
-
)•2n+1,求数列{dn}的前n项和Tn.
(1)设bn=an+1-λan,数列{bn}为等比数列,求实数λ的值;
(2)设cn=
| an |
| 2n |
(3)令dn=(
| 1 | ||
2log2
|
| 1 | ||
log2
|
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn+1=4an+2,得an+1=Sn+1-Sn=(4an+2)-(4an-1+2)(n≥2),由此能求出λ=2.
(2)由已知得bn=an+1-2an=4•2n-1,将an+1-2an=4•2n-1两边同除以2n+1,得
-
=4•2-2=1,由此能求出cn=n.
(3)由cn=
=n,得an=n•2n,从而dn=
-
,由此能求出Tn=2-
.
(2)由已知得bn=an+1-2an=4•2n-1,将an+1-2an=4•2n-1两边同除以2n+1,得
| an+1 |
| 2n+1 |
| an |
| 2n |
(3)由cn=
| an |
| 2n |
| 2n |
| n |
| 2n+1 |
| n+1 |
| 2n+1 |
| n+1 |
解答:
解:(1)由Sn+1=4an+2,得an+1=Sn+1-Sn=(4an+2)-(4an-1+2)(n≥2)
∴an+1-2an=2an-4an-1=2(an-2an-1)
故数列{an+1-2an} 是以a2-2a1为首项,2为公比的等比数列,
∵bn=an+1-λan,数列{bn}为等比数列,
∴λ=2.
(2)由a1=2,a1+a2=S2=4a1+2,
∴a2=8,
∴bn=an+1-2an=4•2n-1,
将an+1-2an=4•2n-1两边同除以2n+1,
得
-
=4•2-2=1,即cn+1-cn=1,
故{cn}是以c1=
=1为首项,1为公差的等差数列,
∴cn=n.
(3)∵cn=
=n,∴an=n•2n,
∴dn=(
-
)•2n+1
=(
-
)•2n+1
=
-
,
∴Tn=2-
+
-
+…+
-
=2-
.
∴Tn=2-
.
∴an+1-2an=2an-4an-1=2(an-2an-1)
故数列{an+1-2an} 是以a2-2a1为首项,2为公比的等比数列,
∵bn=an+1-λan,数列{bn}为等比数列,
∴λ=2.
(2)由a1=2,a1+a2=S2=4a1+2,
∴a2=8,
∴bn=an+1-2an=4•2n-1,
将an+1-2an=4•2n-1两边同除以2n+1,
得
| an+1 |
| 2n+1 |
| an |
| 2n |
故{cn}是以c1=
| a1 |
| 2 |
∴cn=n.
(3)∵cn=
| an |
| 2n |
∴dn=(
| 1 | ||
2log2
|
| 1 | ||
log2
|
=(
| 1 |
| 2n |
| 1 |
| n+1 |
=
| 2n |
| n |
| 2n+1 |
| n+1 |
∴Tn=2-
| 22 |
| 2 |
| 22 |
| 2 |
| 23 |
| 3 |
| 2n |
| n |
| 2n+1 |
| n+1 |
=2-
| 2n+1 |
| n+1 |
∴Tn=2-
| 2n+1 |
| n+1 |
点评:本题考查实数值的求法,考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目