ÌâÄ¿ÄÚÈÝ
6£®Ä³¹¤³§ÔÚ2013Äêµ×ͶÈë100ÍòÔª£¬¹ºÈëÒ»Ì×ÎÛË®´¦ÀíÉ豸£¬¸ÃÉ豸ÿÄêµÄÔËת·ÑÓÃÊÇ1ÍòÔª£¬´ËÍâÿÄê¶¼Òª»¨·ÑÒ»¶¨µÄά»¤·Ñ£¬µÚÒ»ÄêµÄά»¤·ÑΪ2ÍòÔª£¬ÓÉÓÚÉ豸ÀÏ»¯£¬ÒÔºóÿÄêµÄά»¤·Ñ¶¼±ÈÉÏÒ»ÄêÔö¼Ó2ÍòÔª£®Éè¸Ã¹¤³§Ê¹ÓøÃÉ豸x£¨x¡ÊN*£©ÄêµÄ×Ü·ÑÓÃΪy£¨ÍòÔª£©£®£¨1£©½«y±íʾ³ÉxµÄº¯Êý£¨×Ü·ÑÓÃ=¹ºÈë·ÑÓÃ+ÔËת·ÑÓÃ+ά»¤·ÑÓã©£»
£¨2£©Çó¸ÃÉ豸µÄ×î¼ÑʹÓÃÄêÏÞ£¨¼´Ê¹ÓøÃÉ豸ÄêÆ½¾ù·ÑÓÃ×îµÍµÄÄêÏÞ£©£®
·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£¬Ê¹ÓøÃÉ豸xÄêµÄÔËת·ÑÓÃÊÇxÍòÔª£¬ÇÒÿÄêµÄά»¤·ÑÊÇÊ×ÏîΪ2£¬¹«²îÒ²ÊÇ2µÄµÈ²îÊýÁУ¬¿ÉµÃy=100+x+£¨2+4+6+¡+2x£©£»
£¨2£©Ç󯽾ù·ÑÓÃ$\frac{y}{x}=\frac{{{x^2}+2x+100}}{x}$=$x+\frac{100}{x}+2$£¬¹¹Ô캯Êý$Éèg£¨x£©=x+\frac{100}{x}+2£¨x£¾0£©$£¬Í¨¹ýµ¼ÊýÇó³öº¯Êýg£¨x£©µÄ¼«Öµ£¬½ø¶øÇó³öxÖµ£®
½â´ð ½â£º£¨¢ñ£©¸Ã¹¤³§Ê¹ÓøÃÉ豸xÄêµÄÔËת·ÑÓÃÊÇxÍòÔª£¬ÇÒÿÄêµÄά»¤·ÑÊÇÊ×ÏîΪ2£¬¹«²îÒ²ÊÇ2µÄµÈ²îÊýÁУ®ËùÒԸù¤³§Ê¹ÓøÃÉ豸µÄ×Ü·ÑÓÃΪ£ºy=100+x+£¨2+4+6+¡+2x£©=$100+x+\frac{x£¨2+2x£©}{2}$=x2+2x+100£¨x¡ÊN*£©
£¨¢ò£©Ê¹ÓøÃÉ豸ÄêÆ½¾ù·ÑÓÃ$\frac{y}{x}=\frac{{{x^2}+2x+100}}{x}$=$x+\frac{100}{x}+2$.$Éèg£¨x£©=x+\frac{100}{x}+2£¨x£¾0£©$£¬Ôò$g'£¨x£©=1-\frac{100}{x^2}=\frac{£¨x+10£©£¨x-10£©}{x^2}$£®
Áîg'£¨x£©=0£¬µÃx=10£¨¸ºÖµÉáÈ¥£©£®
´Ó¶ø£¬µ±0£¼x£¼10ʱ£¬g'£¨x£©£¼0£»µ±x£¾10ʱ£¬g'£¨x£©£¾0£®
ËùÒÔ£¬g£¨x£©ÔÚ£¨0£¬10£©Éϵݼõ£¬ÔÚ£¨10£¬+¡Þ£©ÉϵÝÔö£®µ±x=10ʱ£¬g£¨x£©ÓÐ×îСֵ£®
¼´¸ÃÉ豸ʹÓÃÄêÏÞÊÇ10Äêʱ£¬ÄêÆ½¾ù·ÑÓÃ×îµÍ£¬ËùÒÔ¸ÃÉ豸µÄ×î¼ÑʹÓÃÄêÏÞÊÇ10Ä꣮
Áí·¨£ºÊ¹ÓøÃÉ豸ÄêÆ½¾ù·ÑÓÃ$\frac{y}{x}=\frac{{{x^2}+2x+100}}{x}$=$x+\frac{100}{x}+2$¡Ý$2\sqrt{x•\frac{100}{x}}+2=22$£¨ÍòÔª£©
µ±ÇÒ½öµ±$x=\frac{100}{x}$£¬¼´x=10ʱȡµÈºÅ£®
¼´¸ÃÉ豸ʹÓÃÄêÏÞÊÇ10Äêʱ£¬ÄêÆ½¾ù·ÑÓÃ×îµÍ£¬ËùÒÔ¸ÃÉ豸µÄ×î¼ÑʹÓÃÄêÏÞÊÇ10Ä꣮
µãÆÀ ¿¼²éÁ˵¼ÊýÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬ÄѵãÊÇÀí½âÌâÒ⣬ÕýÈ·Áгö±í´ïʽ£®