ÌâÄ¿ÄÚÈÝ
13£®2016ÄêÊǺì¾ü³¤Õ÷ʤÀû80ÖÜÄ꣬ijÊеçÊǪ́¾Ù°ì¼ÍÄîºì¾ü³¤Õ÷ʤÀû80ÖÜÄê֪ʶÎÊ´ð£¬Ðû´«³¤Õ÷¾«Éñ£¬Ê×ÏÈÔڼס¢ÒÒ¡¢±û¡¢¶¡Ëĸö²»Í¬µÄ¹«Ô°½øÐÐÖ§³ÖÇ©Ãû»î¶¯£®| ¹«Ô° | ¼× | ÒÒ | ±û | ¶¡ |
| »ñµÃÇ©ÃûÈËÊý | 45 | 60 | 30 | 15 |
£¨1£©Çó´Ë»î¶¯Öи÷¹«Ô°ÐÒÔËÖ®ÐǵÄÈËÊý£»
£¨2£©ÈôÒÒ¹«Ô°ÖÐÿλÐÒÔËÖ®ÐÇÖÐÈÎÑ¡Á½È˽ÓÊܵçÊǪ́¼ÇÕߵIJɷã¬ÇóÕâÁ½È˾ùÀ´×ÔÒÒ¹«Ô°µÄ¸ÅÂÊ£»
£¨3£©µçÊǪ́¼ÇÕß¶ÔÒÒ¹«Ô°µÄÇ©ÃûÈ˽øÐÐÁËÊÇ·ñÓÐÐËȤÑо¿¡°ºì¾ü³¤Õ÷¡±ÀúÊ·µÄÎʾíµ÷²é£¬Í³¼Æ½á¹ûÈçÏ£¨µ¥Î»£ºÈË£©£º
| ÓÐÐËȤ | ÎÞÐËȤ | ºÏ¼Æ | |
| ÄÐ | 25 | 5 | 30 |
| Å® | 15 | 15 | 30 |
| ºÏ¼Æ | 40 | 20 | 60 |
ÁÙ½çÖµ±í£º
| P£¨K2¡Ýk£© | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
·ÖÎö £¨1£©ÀûÓóéÑù±È£¬Çó´Ë»î¶¯Öи÷¹«Ô°ÐÒÔËÖ®ÐǵÄÈËÊý£»
£¨2£©Çó³ö»ù±¾Ê¼þµÄ¸öÊý£¬ÀûÓùŵä¸ÅÐ͸ÅÂʹ«Ê½Çó½â£»
£¨3£©Çó³öK2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¸÷¹«Ô°ÐÒÔËÖ®ÐǵÄÈËÊý·Ö±ðΪ$\frac{45}{150}¡Á10$=3£¬$\frac{60}{150}¡Á10$=4£¬$\frac{30}{150}¡Á10$=2£¬$\frac{15}{150}¡Á10$=1£»
£¨2£©»ù±¾Ê¼þ×ÜÊý${C}_{6}^{2}$=15ÖÖ£¬ÕâÁ½È˾ùÀ´×ÔÒÒ¹«Ô°£¬ÓÐ${C}_{4}^{2}$=6ÖÖ£¬¹ÊËùÇó¸ÅÂÊΪ$\frac{6}{15}$=$\frac{2}{5}$£»
£¨3£©K2=$\frac{60£¨25¡Á15-15¡Á5£©^{2}}{40¡Á20¡Á30¡Á30}$=7.5£¾6.635£¬
¡à¾Ý´ËÅжÏÄÜÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪÓÐÐËȤÑо¿¡°ºì¾ü³¤Õ÷¡±ÀúÊ·ÓëÐÔ±ðÓйأ®
µãÆÀ ±¾Ì⿼²é·Ö²ã³éÑù£¬¿¼²é¸ÅÂʵļÆË㣬¿¼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓã¬ÖªÊ¶×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®ÈôË«ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏßÓëÔ²x2+y2-4y+3=0ÏàÇУ¬Ôò¸ÃË«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $2\sqrt{3}$ | B£® | 2 | C£® | $\sqrt{3}$ | D£® | $\frac{{2\sqrt{3}}}{3}$ |
8£®ÒÑÖªf¡ä£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©µÄµ¼º¯Êý£¬Èô·½³Ìf¡ä£¨x£©=0Î޽⣬ÇÒ?x¡Ê£¨0£¬+¡Þ£©£¬f[f£¨x£©-log2016x]=2017£¬Éèa=f£¨20.5£©£¬b=f£¨log¦Ð3£©£¬c=f£¨log43£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | b£¾c£¾a | B£® | a£¾c£¾b | C£® | c£¾b£¾a | D£® | a£¾b£¾c |
18£®ÃüÌâ¡°?x0¡ÊR£¬Ê¹µÃ$x_0^2£¾{e^{x_0}}$¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
| A£® | ?x0¡ÊR£¬Ê¹µÃ$x_0^2¡Ü{e^{x_0}}$ | B£® | ?x0¡ÊR£¬Ê¹µÃ$x_0^2¡Ü{e^{x_0}}$ | ||
| C£® | ?x0¡ÊR£¬Ê¹µÃ$x_0^2£¾{e^{x_0}}$ | D£® | ?x0¡ÊR£¬Ê¹µÃ$x_0^2£¾{e^{x_0}}$ |
3£®ÏÂÁк¯ÊýÖУ¬×îСֵΪ4µÄÊÇ£¨¡¡¡¡£©
| A£® | y=x+$\frac{4}{x}$ | B£® | y=sinx+$\frac{4}{sinx}$£¨0£¼x£¼¦Ð£© | ||
| C£® | y=ex+4e-x | D£® | y=log3x+4logx3 |