题目内容

已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{
an
2n-1
}的前n项和为Sn,求证:Sn<6.
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(1)利用已知条件建立关系式,进一步求出数列的通项公式.
(2)利用(1)的结论,使用乘公比错位相减法求出数列的和,进一步利用放缩法求得结果
解答: 解:(1)数列{an}为等差数列,
所以:a2=a1+d=a1+2,a4=a1+3d=a1+6
a1,a1+a2,2(a1+a4)成等比数列.
所以:(a1+a2)2=2a1(a1+a4)
解得:a1=1
所以:an=1+2(n-1)=2n-1
证明:(2)已知
an
2n-1
=
2n-1
2n-1

Sn=
1
20
+
3
21
+…+
2n-1
2n-1

1
2
Sn=
1
21
+
3
22
+…+
2n-1
2n
 ②
①-②得:
1
2
Sn=1+2(
1
21
+…+
1
2n-1
)-
2n-1
2n

=3-(
4
2n
+
2n-1
2n
)
=3-
2n+3
2n

所以:Sn=6-
2n+3
2n-1

由于n≥1
所以:
2n+3
2n-1
>0

Sn=6-
2n+3
2n-1
<6
点评:本题考查的知识要点:数列通项公式的应用,错位相减法的应用,放缩法的应用,属于中等题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网