题目内容
已知扇形的弧长为l,所在圆的半径为r,类比三角形的面积公式:S=×底×高,可得扇形的面积公式为________.
rl
如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.
已知椭圆在椭圆上.
(1) 求椭圆的离心率;
(2) 设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足AQ=AO,求直线OQ的斜率的值.
已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则PF1+PF2=________.
已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1) 求双曲线的方程;
(2) 若△F1AB的面积等于6,求直线l的方程.
设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.
(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;
(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.
观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4 , |x|+|y|=2的不同整数解(x,y)的个数为8, |x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为________.
若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1) 若x2-1比1远离0,求x的取值范围;
(2) 对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab.
已知全集,集合,,那么集合
(A) (B)
(C) (D)